Publications by authors named "Christoph Erben"

DNA cages are nanometer-scale polyhedral structures formed by self-assembly from synthetic DNA oligonucleotides. Potential applications include in vivo imaging and the targeted delivery of macromolecules into living cells. We report an investigation of the ability of a model cage, a DNA tetrahedron, to enter live cultured mammalian cells.

View Article and Find Full Text PDF

Many DNA nanostructures have been produced and a wide range of potential applications have been proposed. However, confirmation of accurate 3D construction is particularly challenging. Here, we demonstrate that cryoEM may be exploited to obtain structural information at sufficient resolution to visualize the DNA helix and reveal the absolute stereochemistry of a 7 nm self-assembled DNA tetrahedron.

View Article and Find Full Text PDF

We present a facile method for linking recombinant proteins to DNA. It is based on the nickel-mediated interaction between a hexahistidine tag (His(6)-tag) and DNA functionalized with three nitrilotriacetic acid (NTA) groups. The resulting DNA-protein linkage is site-specific.

View Article and Find Full Text PDF

DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale. Although static structures may find applications in structural biology and computer science, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement. DNA architectures can span three dimensions and DNA devices are capable of movement, but active control of well-defined three-dimensional structures has not been achieved.

View Article and Find Full Text PDF

A three-dimensional optical data storage system that combines a new recording material with a microholographic data format in which data are stored as single-bit microholograms is presented. This format offers less sensitivity to environmental conditions than the page-based holographic approach in addition to an increased compatibility with current storage technologies. The new recording material is based on a thermoplastic material.

View Article and Find Full Text PDF

A major challenge to increasing bandwidth in optical telecommunications is to encode electronic signals onto a lightwave carrier by modulating the light up to very fast rates. Polymer electro-optic materials have the necessary properties to function in photonic devices beyond the 40-GHz bandwidth currently available. An appropriate choice of polymers is shown to effectively eliminate the factors contributing to an optical modulator's decay in the high-frequency response.

View Article and Find Full Text PDF

Two Sn(IV) corroles were synthesized and electrochemically examined. The investigated compounds are represented as (OEC)Sn(C(6)H(5)) and (OEC)SnCl, where OEC = trianion of 2,3,7,8,12,13,17,18-octaethylcorrole. (OEC)Sn(C(6)H(5)) represents the first example of a sigma-bonded metallocorrole which does not undergo a metal-centered electrode reaction.

View Article and Find Full Text PDF