Publications by authors named "Christoph Dobner"

We demonstrate a family of molecular precursors based on 7,10-dibromo-triphenylenes that can selectively produce different varieties of atomically precise porous graphene nanomaterials through the use of different synthetic environments. Upon Yamamoto polymerization of these molecules in solution, the free rotations of the triphenylene units around the C-C bonds result in the formation of cyclotrimers in high yields. In contrast, in on-surface polymerization of the same molecules on Au(111) these rotations are impeded, and the coupling proceeds toward the formation of long polymer chains.

View Article and Find Full Text PDF

We report a new diffusion-controlled on-surface synthesis approach for graphene nanoribbons (GNR) consisting of two types of precursor molecules, which exploits distinct differences in the surface mobilities of the precursors. This approach is a step towards a more controlled fabrication of complex GNR heterostructures and should be applicable to the on-surface synthesis of a variety of GNR heterojunctions.

View Article and Find Full Text PDF

The on-surface coupling of the prototypical precursor molecule for graphene nanoribbon synthesis, 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene (C Br H , TPTP), and its non-brominated analog hexaphenylbenzene (C H , HPB), was investigated on coinage metal substrates as a function of thermal treatment. For HPB, which forms non-covalent 2D monolayers at room temperature, a thermally induced transition of the monolayer's structure could be achieved by moderate annealing, which is likely driven by π-bond formation. It is found that the dibrominated carbon positions of TPTP do not guide the coupling if the growth occurs on a substrate at temperatures that are sufficient to initiate C-H bond activation.

View Article and Find Full Text PDF