Recent evidence for low-temperature oxidation of methyl formate on Au(332) may affect the selectivity of gold catalysts during partial oxidation of methanol. Under isothermal conditions, overoxidation of methyl formate is significantly slower than methanol oxidation which can be attributed to special oxygen species required for overoxidation.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2021
Isothermal molecular beam experiments on the methanol oxidation over the stepped Au(332) surface were conducted under well-defined ultra-high vacuum conditions. In the measurements, a continuous flux of methanol at excess in the gas phase and pulses of atomic oxygen were provided to the surface kept at 230 K. The formation of the partial oxidation product methyl formate under the applied conditions was evidenced by time-resolved mass spectrometry, and accumulation of formate species, which resulted in a deactivation of the surface for methyl formate formation, was followed by Infrared Reflection Absorption Spectroscopy measurements.
View Article and Find Full Text PDF