Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training challenging its broad implementation in clinical routine. This inspired a world-wide quest for automated GMA.
View Article and Find Full Text PDFIn this work we introduce a relative localization method that estimates the coordinate frame transformation between two devices based on distance measurements. We present a linear algorithm that calculates the relative pose in 2D or 3D with four degrees of freedom (4-DOF). This algorithm needs a minimum of five or six distance measurements, respectively, to estimate the relative pose uniquely.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Motion analysis of infants is used for early detection of movement disorders like cerebral palsy. For the development of automated methods, capturing the infant's pose accurately is crucial. Our system for predicting 3D joint positions is based on a recently introduced pixelwise body part classifier using random ferns, to which we propose multiple enhancements.
View Article and Find Full Text PDFEdge-based and region-based active contours are frequently used in image segmentation. While edges characterize small neighborhoods of pixels, region descriptors characterize entire image regions that may have overlapping probability densities. In this paper, we propose to characterize image regions locally by defining Local Region Descriptors (LRDs).
View Article and Find Full Text PDF