Publications by authors named "Christoph Arenz"

A BRET system is described, in which Nanoluciferase was fused to the lipid transfer protein CERT for efficient energy transfer to a Nile red-labeled ceramide, which is either directly bound to CERT or transported to the adjacent Golgi membrane. Bulk formation of sphingomyelin, a major plasma membrane component in mammals, is dependent on CERT-mediated transfer of its predecessor ceramide. CERT is considered a promising drug target but no direct cell-based methods exist to efficiently identify inhibitors.

View Article and Find Full Text PDF

To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'MFSDT') as a drug transporter, using for orthologous protein expression. Complementary Determining Sequence encoding MFSDT was integrated into the genome of genetically engineered strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter. The modified strain exhibited plasma membrane localization of MFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole.

View Article and Find Full Text PDF

Sphingomyelin is a key molecule of sphingolipid metabolism, and its enzymatic breakdown is associated with various infectious diseases. Here, we introduce trifunctional sphingomyelin derivatives that enable the visualization of sphingomyelin distribution and sphingomyelinase activity in infection processes. We demonstrate this by determining the activity of a bacterial sphingomyelinase on the plasma membrane of host cells using a combination of Förster resonance energy transfer and expansion microscopy.

View Article and Find Full Text PDF

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction.

View Article and Find Full Text PDF

Cold shock proteins are characterized by the presence of one or more cold shock domains that bestow them with nucleic acid binding ability. Although cold shock proteins are well characterized in bacteria, plants and humans, there is no information on their existence and role in malaria parasite. Here, we have identified and delineated the function of a cold shock protein of () 'CoSP'.

View Article and Find Full Text PDF

Due to the great potential of surface-enhanced Raman scattering (SERS) as local vibrational probe of lipid-nanostructure interaction in lipid bilayers, it is important to characterize these interactions in detail. The interpretation of SERS data of lipids in living cells requires an understanding of how the molecules interact with gold nanostructures and how intermolecular interactions influence the proximity and contact between lipids and nanoparticles. Ceramide, a sphingolipid that acts as important structural component and regulator of biological function, therefore of interest to probing, lacks a phosphocholine head group that is common to many lipids used in liposome models.

View Article and Find Full Text PDF

Background: Prostaglandin E (PGE) increases pulmonary vascular permeability by activation of the PGE receptor 3 (EP), which may explain adverse pulmonary effects of the EP/EP receptor agonist sulprostone in patients. In addition, PGE contributes to pulmonary oedema in response to platelet-activating factor (PAF). PAF increases endothelial permeability by recruiting the cation channel transient receptor potential canonical 6 (TRPC6) to endothelial caveolae acid sphingomyelinase (ASMase).

View Article and Find Full Text PDF

Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models.

View Article and Find Full Text PDF

A new flavonoid, Jusanin, () has been isolated from the aerial parts of . The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of has been estimated against SARS-CoV-2 using different in silico techniques.

View Article and Find Full Text PDF

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine () and tenuflorin C (), were isolated from the areal parts of and respectively, for the first time. Being rare in nature, the inhibition potentialities of and against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for and against co-crystallized ligands of eight different COVID-19 enzymes.

View Article and Find Full Text PDF

Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations.

View Article and Find Full Text PDF

Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases.

View Article and Find Full Text PDF

Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation.

View Article and Find Full Text PDF

The non-conventional yeast (syn. ) has become a powerful eukaryotic expression platform for biopharmaceutical and biotechnological applications on both laboratory and industrial scales. Despite the fundamental role that artificial transcription factors (ATFs) play in the orthogonal control of gene expression in synthetic biology, a limited number of ATFs are available for .

View Article and Find Full Text PDF

Sphingolipids are ubiquitous in eukaryotic plasma membranes and play major roles in human and animal physiology and disease. This class of lipids is usually defined as being derivatives of sphingosine, a long-chain 1,3-dihydroxy-2-amino alcohol. Various pathological conditions such as diabetes or neuropathy have been associated with changes in the sphingolipidome and an increased biosynthesis of structurally altered non-canonical sphingolipid derivatives.

View Article and Find Full Text PDF

Recently, FRET probes for acid sphingomyelinase (ASM) have enabled the observation of enzyme activity in intact cells for the first time. Here we present an ASM FRET probe specifically optimized for 2-photon excitation. To facilitate probe characterization and comparison to the previous probe, we mixed the two intact probes with defined amounts of the probes' ceramide cleavage products and mounted them on lipid beads.

View Article and Find Full Text PDF

1-deoxy-sphingolipids, also known as atypical sphingolipids, are directly implicated in the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type 2. The mechanisms underlying their patho-physiological actions are yet to be elucidated. Accumulating evidence suggests that the biological actions of canonical sphingolipids are triggered by changes promoted on membrane organization and biophysical properties.

View Article and Find Full Text PDF

Transfusion-related acute lung injury (TRALI) is a hazardous transfusion complication with an associated mortality of 5% to 15%. We previously showed that stored (5 days) but not fresh platelets (1 day) cause TRALI via ceramide-mediated endothelial barrier dysfunction. As biological ceramides are hydrophobic, extracellular vesicles (EVs) may be required to shuttle these sphingolipids from platelets to endothelial cells.

View Article and Find Full Text PDF

Acid sphingomyelinase (ASM) is a potential drug target and involved in rapid lipid signalling events. However, there are no tools available to adequately study such processes. Based on a non cell-permeable PtdIns(3,5)P2 inhibitor of ASM, we developed a compound with o-nitrobenzyl photocages and butyryl esters to transiently mask hydroxyl groups.

View Article and Find Full Text PDF

Ceramide transfer protein (CERT) mediates non-vesicular transfer of ceramide from endoplasmic reticulum to Golgi apparatus and thus catalyzes the rate-limiting step of sphingomyelin biosynthesis. Usually, CERT ligands are evaluated in tedious binding assays or non-homogenous transfer assays using radiolabeled ceramides. Herein, a facile and sensitive assay for CERT, based on Förster resonance energy transfer (FRET), is presented.

View Article and Find Full Text PDF

There is interest in developing inhibitors of human neutral ceramidase (nCDase) because this enzyme plays a critical role in colon cancer. There are currently no potent or clinically effective inhibitors for nCDase reported to date, so we adapted a fluorescence-based enzyme activity method to a high-throughput screening format. We opted to use an assay whereby nCDase hydrolyzes the substrate RBM 14-16, and the addition of NaIO4 acts as an oxidant that releases umbelliferone, resulting in a fluorescent signal.

View Article and Find Full Text PDF

Sphingolipids (SLs) are chemically diverse lipids that have important structural and signaling functions within mammalian cells. SLs are commonly defined by the presence of a long-chain base (LCB) that is normally formed by the conjugation of l-serine and palmitoyl-CoA. This pyridoxal 5-phosphate (PLP)-dependent reaction is mediated by the enzyme serine-palmitoyltransferase (SPT).

View Article and Find Full Text PDF

Compared to the canonical sphingoid backbone of sphingolipids (SLs), atypical long-chain bases (LCBs) lack C1-OH (1-deoxy-LCBs) or C1-CHOH (1-deoxymethyl-LCBs). In addition, when unsaturated, they present a -double bond instead of the canonical  Δ4-5 -double bond. These atypical LCBs are directly correlated with the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type II through yet unknown mechanisms.

View Article and Find Full Text PDF

1-Deoxysphingolipids are a recently described class of sphingolipids that have been shown to be associated with several disease states including diabetic and hereditary neuropathy. The identification and characterization of 1-deoxysphingolipids and their metabolites is therefore highly important. However, exact structure determination requires a combination of sophisticated analytical techniques due to the presence of various isomers, such as ketone/alkenol isomers, carbon-carbon double-bond (C=C) isomers and hydroxylation regioisomers.

View Article and Find Full Text PDF

The inhibition of micro RNA (miRNA) maturation by Dicer and loading matured miRNAs into the RNA-induced silencing complex (RISC) is envisioned as a modality for treatment of cancer. Existing methods for evaluating maturation either focus on the conversion of modified precursors or detect mature miRNA. Whereas the former is not applicable to native pre-miRNA, the latter approach underestimates maturation when both nonmatured and matured miRNA molecules are subject to cleavage.

View Article and Find Full Text PDF