Publications by authors named "Christoph Adami"

Article Synopsis
  • The text explores the possibility of machines being sentient, questioning whether they can truly perceive, feel, and be conscious of their surroundings.
  • It discusses the potential for achieving sentience through Darwinian evolution to create artificial brains for robots.
  • The author also raises ethical concerns and dangers associated with developing sentient machines.
View Article and Find Full Text PDF

While cognitive theory has advanced several candidate frameworks to explain attentional entrainment, the neural basis for the temporal allocation of attention is unknown. Here we present a new model of attentional entrainment guided by empirical evidence obtained using a cohort of 50 artificial brains. These brains were evolved in silico to perform a duration judgment task similar to one where human subjects perform duration judgments in auditory oddball paradigms.

View Article and Find Full Text PDF

Deep learning of artificial neural networks (ANNs) is creating highly functional processes that are, unfortunately, nearly as hard to interpret as their biological counterparts. Identification of functional modules in natural brains plays an important role in cognitive and neuroscience alike, and can be carried out using a wide range of technologies such as fMRI, EEG/ERP, MEG, or calcium imaging. However, we do not have such robust methods at our disposal when it comes to understanding functional modules in artificial neural networks.

View Article and Find Full Text PDF

Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool--that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks.

View Article and Find Full Text PDF

The information content of symbolic sequences (such as nucleic or amino acid sequences, but also neuronal firings or strings of letters) can be calculated from an ensemble of such sequences, but because information cannot be assigned to single sequences, we cannot correlate information to other observables attached to the sequence. Here we show that an information obtained from multivariate (multiple-variable) correlations within sequences of a 'training' ensemble can be used to predict observables of out-of-sample sequences with an accuracy that scales with the complexity of correlations, showing that functional information emerges from a hierarchy of multi-variable correlations. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.

View Article and Find Full Text PDF

How information is encoded in bio-molecular sequences is difficult to quantify since such an analysis usually requires sampling an exponentially large genetic space. Here we show how information theory reveals both robust and compressed encodings in the largest complete genotype-phenotype map (over 5 trillion sequences) obtained to date.

View Article and Find Full Text PDF

How cognitive neural systems process information is largely unknown, in part because of how difficult it is to accurately follow the flow of information from sensors via neurons to actuators. Measuring the flow of information is different from measuring correlations between firing neurons, for which several measures are available, foremost among them the Shannon information, which is an undirected measure. Several information-theoretic notions of "directed information" have been used to successfully detect the flow of information in some systems, in particular in the neuroscience community.

View Article and Find Full Text PDF

High mutation rates select for the evolution of mutational robustness where populations inhabit flat fitness peaks with little epistasis, protecting them from lethal mutagenesis. Recent evidence suggests that a different effect protects small populations from extinction via the accumulation of deleterious mutations. In drift robustness, populations tend to occupy peaks with steep flanks and positive epistasis between mutations.

View Article and Find Full Text PDF

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an process that transcends the substrate in which it occurs.

View Article and Find Full Text PDF

Learning is a widespread ability among animals and, like physical traits, is subject to evolution. But how did learning first arise? What selection pressures and phenotypic preconditions fostered its evolution? Neither the fossil record nor phylogenetic comparative studies provide answers to these questions. Here, we take a novel approach by studying digital organisms in environments that promote the evolution of navigation and associative learning.

View Article and Find Full Text PDF

Populations exposed to a high mutation rate harbor abundant deleterious genetic variation, leading to depressed mean fitness. This reduction in mean fitness presents an opportunity for selection to restore fitness through the evolution of mutational robustness. In extreme cases, selection for mutational robustness can lead to genotypes (with low fitness but high robustness) outcompeting genotypes (with high fitness but low robustness)-a phenomenon known as .

View Article and Find Full Text PDF

How cooperation can evolve between players is an unsolved problem of biology. Here we use Hamiltonian dynamics of models of the Ising type to describe populations of cooperating and defecting players to show that the equilibrium fraction of cooperators is given by the expectation value of a thermal observable akin to a magnetization. We apply the formalism to the public goods game with three players and show that a phase transition between cooperation and defection occurs that is equivalent to a transition in one-dimensional Ising crystals with long-range interactions.

View Article and Find Full Text PDF

While all organisms on Earth share a common descent, there is no consensus on whether the origin of the ancestral self-replicator was a one-off event or whether it only represented the final survivor of multiple origins. Here, we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry).

View Article and Find Full Text PDF

Most mutations are deleterious and cause a reduction in population fitness known as the mutational load. In small populations, weakened selection against slightly-deleterious mutations results in an additional fitness reduction. Many studies have established that populations can evolve a reduced mutational load by evolving mutational robustness, but it is uncertain whether small populations can evolve a reduced susceptibility to drift-related fitness declines.

View Article and Find Full Text PDF

Predicting protein structure from sequence remains a major open problem in protein biochemistry. One component of predicting complete structures is the prediction of inter-residue contact patterns (contact maps). Here, we discuss protein contact map prediction by machine learning.

View Article and Find Full Text PDF

A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance.

View Article and Find Full Text PDF

Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed.

View Article and Find Full Text PDF

The role of historical contingency in the origin of life is one of the great unknowns in modern science. Only one example of life exists-one that proceeded from a single self-replicating organism (or a set of replicating hypercycles) to the vast complexity we see today in Earth's biosphere. We know that emergent life has the potential to evolve great increases in complexity, but it is unknown if evolvability is automatic given any self-replicating organism.

View Article and Find Full Text PDF

Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors.

View Article and Find Full Text PDF

Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some amoebas. This remarkable variation in genome size is the outcome of complex interactions between various evolutionary factors such as mutation rate and population size. While comparative genomics has uncovered how some of these evolutionary factors influence genome size, we still do not understand what drives genome size evolution.

View Article and Find Full Text PDF