Publications by authors named "Christoph A Weber"

Recent experimental studies suggest that wet-dry cycles and coexisting phases can each strongly alter chemical processes. The mechanisms of why and to what degree chemical processes are altered when subjected to evaporation and condensation are unclear. To close this gap, we developed a theoretical framework for nondilute chemical reactions subject to nonequilibrium conditions of evaporation and condensation.

View Article and Find Full Text PDF
Article Synopsis
  • Liquid-liquid phase separation creates spherical droplets that can merge into a larger stable droplet to minimize free energy.
  • Chemically fueled phase separation involves reactions that continuously supply energy, allowing for the creation of dynamic, non-equilibrium structures.
  • The study reveals that active spherical droplets can transform into liquid shells, with performance linked to material gradients, indicating potential biological applications like the formation of membraneless organelles.
View Article and Find Full Text PDF

The emergence of functional oligonucleotides on early Earth required a molecular selection mechanism to screen for specific sequences with prebiotic functions. Cyclic processes such as daily temperature oscillations were ubiquitous in this environment and could trigger oligonucleotide phase separation. Here, we propose sequence selection based on phase separation cycles realized through sedimentation in a system subjected to the feeding of oligonucleotides.

View Article and Find Full Text PDF

Chemically active systems such as living cells are maintained out of thermal equilibrium due to chemical events which generate heat and lead to active fluctuations. A key question is to understand on which time and length scales active fluctuations dominate thermal fluctuations. Here, we formulate a stochastic field theory with Poisson white noise to describe the heat fluctuations which are generated by stochastic chemical events and lead to active temperature fluctuations.

View Article and Find Full Text PDF

Biomolecular condensates in living cells can exhibit a complex rheology, including viscoelastic and glassy behavior. This rheological behavior of condensates was suggested to regulate polymerization of cytoskeletal filaments and aggregation of amyloid fibrils. Here, we theoretically investigate how the rheological properties of condensates can control the formation of linear aggregates.

View Article and Find Full Text PDF

The kinetics of chemical reactions are determined by the law of mass action, which has been successfully applied to homogeneous, dilute mixtures. At nondilute conditions, interactions among the components can give rise to coexisting phases, which can significantly alter the kinetics of chemical reactions. Here, we derive a theory for chemical reactions in coexisting phases at phase equilibrium.

View Article and Find Full Text PDF
Article Synopsis
  • * The strength of these interactions affects wetting behavior, ranging from nonwetting to engulfment through endocytosis.
  • * A theoretical model based on surface energies and coacervate sizes explains the observed behaviors, which could enhance our understanding of cellular interactions and provide new methods for delivering substances inside cells.
View Article and Find Full Text PDF

Key processes of biological condensates are diffusion and material exchange with their environment. Experimentally, diffusive dynamics are typically probed via fluorescent labels. However, to date, a physics-based, quantitative framework for the dynamics of labeled condensate components is lacking.

View Article and Find Full Text PDF

Phase separation and transitions among different molecular states are ubiquitous in living cells. Such transitions can be governed by local equilibrium thermodynamics or by active processes controlled by biological fuel. It remains largely unexplored how the behavior of phase-separating systems with molecular transitions differs between thermodynamic equilibrium and cases in which the detailed balance of the molecular transition rates is broken because of the presence of fuel.

View Article and Find Full Text PDF

Membraneless compartments, also known as condensates, provide chemically distinct environments and thus spatially organize the cell. A well-studied example of condensates is P granules in the roundworm that play an important role in the development of the germline. P granules are RNA-rich protein condensates that share the key properties of liquid droplets such as a spherical shape, the ability to fuse, and fast diffusion of their molecular components.

View Article and Find Full Text PDF

Non-equilibrium, fuel-driven reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of emergent assemblies.

View Article and Find Full Text PDF

Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium. We provide a simple theoretical framework that embodies this feedback mechanism in a multiphase model for flow through a frangible porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing.

View Article and Find Full Text PDF

We present a minimal model to study the effects of pH on liquid phase separation of macromolecules. Our model describes a mixture composed of water and macromolecules that exist in three different charge states and have a tendency to phase separate. This phase separation is affected by pH via a set of chemical reactions describing protonation and deprotonation of macromolecules, as well as self-ionization of water.

View Article and Find Full Text PDF

Protein aggregation has been implicated in many medical disorders, including Alzheimer's and Parkinson's diseases. Potential therapeutic strategies for these diseases propose the use of drugs to inhibit specific molecular events during the aggregation process. However, viable treatment protocols require balancing the efficacy of the drug with its toxicity, while accounting for the underlying events of aggregation and inhibition at the molecular level.

View Article and Find Full Text PDF

Many bacteria rely on active cell appendages, such as type IV pili, to move over substrates and interact with neighboring cells. Here, we study the motion of individual cells and bacterial colonies, mediated by the collective interactions of multiple pili. It was shown experimentally that the substrate motility of Neisseria gonorrhoeae cells can be described as a persistent random walk with a persistence length that exceeds the mean pili length.

View Article and Find Full Text PDF

Phase separating systems that are maintained away from thermodynamic equilibrium via molecular processes represent a class of active systems, which we call active emulsions. These systems are driven by external energy input, for example provided by an external fuel reservoir. The external energy input gives rise to novel phenomena that are not present in passive systems.

View Article and Find Full Text PDF

Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability.

View Article and Find Full Text PDF

is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells.

View Article and Find Full Text PDF

Living matter has the extraordinary ability to behave in a concerted manner, which is exemplified throughout nature ranging from the self-organisation of the cytoskeleton to flocks of animals [1-4]. The microscopic dynamics of constituents have been linked to the system's meso- or macroscopic behaviour via the Boltzmann equation for propelled particles [5-10]. Thereby, simplified binary collision rules between the constituents had to be assumed due to the lack of experimental data.

View Article and Find Full Text PDF

P granules are non-membrane-bound RNA-protein compartments that are involved in germline development in C. elegans. They are liquids that condense at one end of the embryo by localized phase separation, driven by gradients of polarity proteins such as the mRNA-binding protein MEX-5.

View Article and Find Full Text PDF

The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant.

View Article and Find Full Text PDF

Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood.

View Article and Find Full Text PDF

Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter.

View Article and Find Full Text PDF

Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.

View Article and Find Full Text PDF

How do topological defects affect the degree of order in active matter? To answer this question we investigate an agent-based model of self-propelled particles, which accounts for polar alignment and short-ranged repulsive interactions. For strong alignment forces we find collectively moving polycrystalline states with fluctuating networks of grain boundaries. In the regime where repulsive forces dominate, the fluctuations generated by the active system give rise to quasi-long-range transitional order, but-unlike the thermal system-without creating topological defects.

View Article and Find Full Text PDF