Publications by authors named "Christoffer Trier Maansson"

Multiple studies have shown that cell-free DNA (cfDNA) from cancer patients differ in both fragment length and fragment end motif (FEM) from healthy individuals, yet there is a lack of understanding of how the two factors combined are associated with cancer and gene transcription. In this study, we conducted cfDNA fragmentomics evaluations using plasma from lung cancer patients ( = 12) and healthy individuals ( = 7). A personal gene expression profile was established from plasma using H3K36me3 cell-free chromatin immunoprecipitation sequencing (cfChIP-seq).

View Article and Find Full Text PDF

Background: EML4-ALK gene fusions are oncogenic drivers in non-small cell lung cancer (NSCLC), and liquid biopsies containing EML4-ALK fragments can be used to study tumor dynamics using next-generation sequencing (NGS). However, the sensitivity of EML4-ALK detection varies between pipelines and analysis tools.

Results: We developed an R/Bioconductor package, DNAfusion, which can be applied to BAM files generated by commercially available NGS pipelines, such as AVENIO.

View Article and Find Full Text PDF

Cell-free DNA (cfDNA) in blood plasma can be bound to nucleosomes that contain post-translational modifications representing the epigenetic profile of the cell of origin. This includes histone H3 lysine 36 trimethylation (H3K36me3), a marker of active transcription. We hypothesised that cell-free chromatin immunoprecipitation (cfChIP) of H3K36me3-modified nucleosomes present in blood plasma can delineate tumour gene expression levels.

View Article and Find Full Text PDF

Background: Epithelial-mesenchymal-transition (EMT) is an epigenetic-based mechanism contributing to the acquired treatment resistance against receptor tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) cells harboring epidermal growth factor receptor ()-mutations. Delineating the exact epigenetic and gene-expression alterations in EMT-associated EGFR TKI-resistance (EMT-E-TKI-R) is vital for improved diagnosis and treatment of NSCLC patients.

Methods: We characterized genome-wide changes in mRNA-expression, DNA-methylation and the histone-modification H3K36me3 in -mutated NSCLC HCC827 cells in result of acquired EMT-E-TKI-R.

View Article and Find Full Text PDF