Wood formation in higher plants is a complex and costly developmental process regulated by a complex network of transcription factors, short peptide signals and hormones. Correct spatiotemporal initiation of differentiation and downstream developmental stages is vital for proper wood formation. Members of the NAC (NAM, ATAF1/2 and CUC) family of transcription factors are described as top level regulators of xylem cell fate and secondary cell wall (SCW) deposition, but the signals initiating their transcription have yet to be elucidated.
View Article and Find Full Text PDFTrees represent the largest terrestrial carbon sink and a renewable source of ligno-cellulose. There is significant scope for yield and quality improvement in these largely undomesticated species, and efforts to engineer elite varieties will benefit from improved understanding of the transcriptional network underlying cambial growth and wood formation. We generated high-spatial-resolution RNA sequencing data spanning the secondary phloem, vascular cambium, and wood-forming tissues of The transcriptome comprised 28,294 expressed, annotated genes, 78 novel protein-coding genes, and 567 putative long intergenic noncoding RNAs.
View Article and Find Full Text PDFUnlike animals, plants often have an indefinite genetic potency to form new organs throughout their entire lifespan. Growth and organogenesis are driven by cell divisions in meristems at distinct sites within the plant. Since the meristems contributing to axial thickening in dicots (cambia) are separated from places where axes elongate (apical meristems); there is a need of communication to coordinate growth.
View Article and Find Full Text PDFThe process of chloroplast biogenesis requires a multitude of pathways and processes to establish chloroplast function. In cotyledons of seedlings, chloroplasts develop either directly from proplastids (also named eoplasts) or, if germinated in the dark, via etioplasts, whereas in leaves chloroplasts derive from proplastids in the apical meristem and are then multiplied by division. The snowy cotyledon 2, sco2, mutations specifically disrupt chloroplast biogenesis in cotyledons.
View Article and Find Full Text PDF