Currently, X-ray crystallography, which typically uses synchrotron sources, remains the dominant method for structural determination of proteins and other biomolecules. However, small protein crystals do not provide sufficiently high-resolution diffraction patterns and suffer radiation damage; therefore, conventional X-ray crystallography needs larger protein crystals. The burgeoning method of serial crystallography using X-ray free-electron lasers (XFELs) avoids these challenges: it affords excellent structural data from weakly diffracting objects, including tiny crystals.
View Article and Find Full Text PDFWell-diffracting protein crystals are indispensable for X-ray diffraction analysis, which is still the most powerful method for structure-function studies of biomolecules. A promising approach to growing such crystals is the use of porous nucleation-inducing materials. However, while protein crystal nucleation in pores has been thoroughly considered, little attention has been paid to the subsequent growth of crystals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2019
Macromolecular crystallization is crucial to a large number of scientific fields, including structural biology; drug design, formulation, and delivery; manufacture of biomaterials; and preparation of foodstuffs. The purpose of this study is to facilitate control of crystallization, by investigating hydrophobic interface-assisted protein crystallization both theoretically and experimentally. The application of hydrophobic liquids as nucleation promoters or suppressors has rarely been investigated, and provides an underused avenue to explore in protein crystallization.
View Article and Find Full Text PDFThe most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution.
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2006
The long-standing problem of face morphology is discussed. Special emphasis is put on macroscopically flat faces, whose growth, under low supersaturations, is driven by dislocations possessing some screw component. The most general case, where the crystal face is pierced by more than one screw dislocation, is considered.
View Article and Find Full Text PDFThe centrifugal increase of concentration is nondestructive, rapid, and simple technology. Therefore it is used to create a higher supersaturation that is required for crystal nucleation, as the one that is appropriate for the subsequent growth. Crystal nucleation is evoked in glass capillary tubes filled with protein solutions.
View Article and Find Full Text PDFAnn N Y Acad Sci
November 2004
Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials.
View Article and Find Full Text PDF