Cellular electrophysiology is the foundation of many fields, from basic science in neurology, cardiology, oncology to safety critical applications for drug safety testing, clinical phenotyping, etc. Patch-clamp voltage clamp is the gold standard technique for studying cellular electrophysiology. Yet, the quality of these experiments is not always transparent, which may lead to erroneous conclusions for studies and applications.
View Article and Find Full Text PDFAll new drugs must go through preclinical screening tests to determine their proarrhythmic potential. While these assays effectively filter out dangerous drugs, they are too conservative, often misclassifying safe compounds as proarrhythmic. In this study, we attempt to address this shortcoming with a novel, medium-throughput drug-screening approach: we use an automated patch-clamp system to acquire optimized voltage clamp (VC) and action potential (AP) data from human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) at several drug concentrations (baseline, 3×, 10× and 20× the effective free plasma concentrations).
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer potential as an in vitro model for studying drug cardiotoxicity and patient-specific cardiovascular disease. The inherent electrophysiological heterogeneity of these cells limits the depth of insights that can be drawn from well-designed experiments. In this review, we provide our perspective on some sources and the consequences of iPSC-CM heterogeneity.
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising tool to study arrhythmia-related factors, but the variability of action potential (AP) recordings from these cells limits their use as an in vitro model. In this study, we use recently published brief (10 s), dynamic voltage-clamp (VC) data to provide mechanistic insights into the ionic currents contributing to AP heterogeneity; we call this approach rapid ionic current phenotyping (RICP). Features of this VC data were correlated to AP recordings from the same cells, and we used computational models to generate mechanistic insights into cellular heterogeneity.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2024
Cardiac ion currents may compensate for each other when one is compromised by a congenital or drug-induced defect. Such redundancy contributes to a robust repolarization reserve that can prevent the development of lethal arrhythmias. Most efforts made to describe this phenomenon have quantified contributions by individual ion currents.
View Article and Find Full Text PDFAs a renewable, easily accessible, human-derived model, human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) are a promising tool for studying arrhythmia-related factors, including cardiotoxicity and congenital proarrhythmia risks. An oft-mentioned limitation of iPSC-CMs is the abundant cell-to-cell variability in recordings of their electrical activity. Here, we develop a new method, rapid ionic current phenotyping (RICP), that utilizes a short (10 s) voltage clamp protocol to quantify cell-to-cell heterogeneity in key ionic currents.
View Article and Find Full Text PDFAims: Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have become an essential tool to study arrhythmia mechanisms. Much of the foundational work on these cells, as well as the computational models built from the resultant data, has overlooked the contribution of seal-leak current on the immature and heterogeneous phenotype that has come to define these cells. The aim of this study is to understand the effect of seal-leak current on recordings of action potential (AP) morphology.
View Article and Find Full Text PDFBackground And Purpose: Before advancing to clinical trials, new drugs are screened for their pro-arrhythmic potential using a method that is overly conservative and provides limited mechanistic insight. The shortcomings of this approach can lead to the mis-classification of beneficial drugs as pro-arrhythmic.
Experimental Approach: An in silico-in vitro pipeline was developed to circumvent these shortcomings.
The sinoatrial node (SAN) is the primary pacemaker of the heart. The human SAN is poorly understood due to limited primary tissue access and limitations in robust derivation methods. We developed a dual knockin human embryonic stem cell (hESC) reporter line, which allows the identification and purification of SAN-like cells.
View Article and Find Full Text PDFRepolarization reserve, the robustness of a cell to repolarize even when one of the repolarization mechanisms is failing, has been described qualitatively in terms of ionic currents, but has not been quantified by a generic metric that is applicable to drug screening. Prolonged repolarization leading to repolarization failure is highly arrhythmogenic. It may lead to ventricular tachycardia caused by triggered activity from early afterdepolarizations (EADs), or it may promote the occurrence of unidirectional conduction block and reentry.
View Article and Find Full Text PDFWiley Interdiscip Rev Syst Biol Med
July 2020
Cardiac electrophysiology models are among the most mature and well-studied mathematical models of biological systems. This maturity is bringing new challenges as models are being used increasingly to make quantitative rather than qualitative predictions. As such, calibrating the parameters within ion current and action potential (AP) models to experimental data sets is a crucial step in constructing a predictive model.
View Article and Find Full Text PDFAims: Human embryonic stem cells (hESCs) can be used to generate scalable numbers of cardiomyocytes (CMs) for studying cardiac biology, disease modelling, drug screens, and potentially for regenerative therapies. A fluorescence-based reporter line will significantly enhance our capacities to visualize the derivation, survival, and function of hESC-derived CMs. Our goal was to develop a reporter cell line for real-time monitoring of live hESC-derived CMs.
View Article and Find Full Text PDFiPSC-derived cardiomyocytes (iPSC-CMs) are a potentially advantageous platform for drug screening because they provide a renewable source of human cardiomyocytes. One obstacle to their implementation is their immature electrophysiology, which reduces relevance to adult arrhythmogenesis. To address this, dynamic clamp is used to inject current representing the insufficient potassium current, I, thereby producing more adult-like electrophysiology.
View Article and Find Full Text PDFDynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses.
View Article and Find Full Text PDFcardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power.
View Article and Find Full Text PDFIn vivo, cardiomyocytes comprise a heterogeneous population of contractile cells defined by unique electrophysiologies, molecular markers and morphologies. The mechanisms directing myocardial cells to specific sub-lineages remain poorly understood. Here we report that overexpression of TGFβ-Activated Kinase (TAK1/Map3k7) in mouse embryonic stem (ES) cells faithfully directs myocardial differentiation of embryoid body (EB)-derived cardiac cells toward the sinoatrial node (SAN) lineage.
View Article and Find Full Text PDFAccumulation of intracellular Na is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na concentration, which changes much more slowly than the remaining variables.
View Article and Find Full Text PDFThe ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols.
View Article and Find Full Text PDFKey Points: Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model.
View Article and Find Full Text PDFFibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however, the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa that slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes, resulting in a substrate for cardiac arrhythmia. An emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junction (GJ) channels.
View Article and Find Full Text PDFMathematical models of cardiac electrophysiology are instrumental in determining mechanisms of cardiac arrhythmias. However, the foundation of a realistic multiscale heart model is only as strong as the underlying cell model. While there have been myriad advances in the improvement of cellular-level models, the identification of model parameters, such as ion channel conductances and rate constants, remains a challenging problem.
View Article and Find Full Text PDFThe adult heart is composed of a dense network of cardiomyocytes surrounded by nonmyocytes, the most abundant of which are cardiac fibroblasts. Several cardiac diseases, such as myocardial infarction or dilated cardiomyopathy, are associated with an increased density of fibroblasts, that is, fibrosis. Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however the underlying mechanisms are only partially understood.
View Article and Find Full Text PDFThe traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g.
View Article and Find Full Text PDFThe injection of computer-simulated conductances through the dynamic clamp technique has allowed researchers to probe the intercellular and intracellular dynamics of cardiac and neuronal systems with great precision. By coupling computational models to biological systems, dynamic clamp has become a proven tool in electrophysiology with many applications, such as generating hybrid networks in neurons or simulating channelopathies in cardiomyocytes. While its applications are broad, the approach is straightforward: synthesizing traditional patch clamp, computational modeling, and closed-loop feedback control to simulate a cellular conductance.
View Article and Find Full Text PDFCardiac alternans, a putative trigger event for cardiac reentry, is a beat-to-beat alternation in membrane potential and calcium transient. Alternans was originally attributed to instabilities in transmembrane ion channel dynamics (i.e.
View Article and Find Full Text PDF