Cell size and shape affect cellular processes such as cell survival, growth and differentiation, thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner.
View Article and Find Full Text PDFAll vertebrates possess mechanisms to restore damaged tissues with outcomes ranging from regeneration to scarring. Unfortunately, the mammalian response to tissue injury most often culminates in scar formation. Accounting for nearly 45% of deaths in the developed world, fibrosis is a process that stands diametrically opposed to functional tissue regeneration.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis.
View Article and Find Full Text PDFEur J Cell Biol
November 2016
The epithelial-to-mesenchymal transition (EMT) enables cells of epithelial phenotype to become motile and change to a migratory mesenchymal phenotype. EMT is known to be a fundamental requisite for tissue morphogenesis, and EMT-related pathways have been described in cancer metastasis and tissue fibrosis. Epithelial structures are marked by the presence of a sheet-like extracellular matrix, the basement membrane, which is assembled from two major proteins, laminin and collagen type IV.
View Article and Find Full Text PDFAngiogenesis, the formation of blood vessels from pre-existing ones, is of vital importance during the early stages of bone healing. Extracellular stiffness plays an important role in regulating endothelial cell behavior and angiogenesis, but how this mechanical cue affects proliferation kinetics, gene regulation, and the expression of proteins implicated in angiogenesis and bone regeneration remains unclear. Using collagen-coated polyacrylamide (PAAm) hydrogels, human umbilical vein endothelial cells (HUVECs) are exposed to an environment that mimics the elastic properties of collagenous bone, and cellular proliferation and gene and protein expressions are assessed.
View Article and Find Full Text PDFRegenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels.
View Article and Find Full Text PDFA peptide was designed to generate a sub-nanometric template that guides the growth of fluorescent gold nanoclusters. The peptide was endorsed with nucleating moieties and a three-dimensional structure that arrests the growth of ultrasmall nanoparticles. The nanoclusters are not cytotoxic and can be found in the cytosol of cells.
View Article and Find Full Text PDFIn vitro Raman spectroscopy used for non-invasive, non-destructive characterization of single cells and tissues has proven to be a powerful tool for understanding the complex biochemical processes within these biological systems. Additionally it enables the comparison of a wide range of in vitro model systems by discriminating them based on their biomolecular differences. However, one persistent challenge in Raman spectroscopy has been the highly complex structure of cell and tissue spectra, which comprise signals from lipids, proteins, carbohydrates and nucleic acids, which may overlap significantly.
View Article and Find Full Text PDFThe dynamic interplay between the extracellular matrix and embryonic stem cells (ESCs) constitutes one of the key steps in understanding stem cell differentiation in vitro. Here we report a biologically-active laminin-111 fragment generated by matrix metalloproteinase 2 (MMP2) processing, which is highly up-regulated during differentiation. We show that the β1-chain-derived fragment interacts via α3β1-integrins, thereby triggering the down-regulation of MMP2 in mouse and human ESCs.
View Article and Find Full Text PDF