Publications by authors named "Christine Woolley"

Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1-50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term "ereptiospiration" is used here to describe this combination of thermal transpiration at high temperature gradients since the process can force the creation of thermal aerosols by rapid heating in a localized zone. Experimental data were generated for these materials using two different supports for metering the materials to the battery powered coil: namely, a stainless steel fiber bundle and a 3-D printed steel cartridge.

View Article and Find Full Text PDF

Blood is one of the most important biofluids used for clinical diagnostics. Cells and proteins in the blood can provide a rich source of information for the evaluation of human health. Efficient separation of blood components is a necessary process in order to minimize the interference of unwanted components during sensing, separation, and detection.

View Article and Find Full Text PDF

To achieve improved sensitivity in cardiac biomarker detection, a batch incubation magnetic microbead immunoassay was developed and tested on three separate human protein targets: myoglobin, heart-type fatty acid binding protein, and cardiac troponin I. A sandwich immunoassay was performed in a simple micro-centrifuge tube allowing full dispersal of the solid capture surface during incubations. Following magnetic bead capture and wash steps, samples were analyzed in the presence of a manipulated magnetic field utilizing a modified microscope slide and fluorescent inverted microscope to collect video data files.

View Article and Find Full Text PDF

Immunoassays exploit the highly selective interaction between antibodies and antigens to provide a vital method for biomolecule detection at low concentrations. Developers and practitioners of immunoassays have long known that non-specific binding often restricts immunoassay limits of quantification (LOQs). Aside from non-specific binding, most efforts by analytical chemists to reduce the LOQ for these techniques have focused on improving the signal amplification methods and minimizing the limitations of the detection system.

View Article and Find Full Text PDF

Options for biomedical analysis continue to evolve from many fields of study, employing diverse detection and quantification methods. New technologies in this arena focus on improving the sensitivity of analysis and the speed of testing, as well as producing systems at low cost which can be used on site as a point-of-care device for telemedicine applications. In this article, the most important original experimental platforms as well as current commercial approaches to biomedical analysis are critically chosen and reviewed, covering January 2010 to January 2014.

View Article and Find Full Text PDF

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.

View Article and Find Full Text PDF

Creative and novel microimmunoassay approaches continue to proliferate across many platforms originating from several fields of study. These efforts are aimed at improving one or more metrics for clinical tests, including improved sensitivity, increased speed, reduced cost, smaller sample size, the ability to analyze multiple antigens in parallel and ease of use. Many approaches focus on the production of microarrays that accomplish standard assays in parallel, or mobile solid-support formats to overcome issues of high background noise and long incubation times.

View Article and Find Full Text PDF

Candida albicans is an opportunistic fungal pathogen responsible for a variety of cutaneous and systemic human infections. Virulence of C. albicans increases upon exposure to some environmental stresses; therefore, we explored phenotypic responses of C.

View Article and Find Full Text PDF