Publications by authors named "Christine V Putnis"

The capture of cadmium (Cd) from phosphate-containing solutions during the replacement of CaCO by phosphate phases such as hydroxylapatite (HAP) and tricalcium phosphate (TCP) has been studied under high and low temperature and pressure conditions using atomic force microscopy, scanning electron microscopy equipped with an X-ray spectrometer and a backscattered electron detector, Raman spectroscopy, and microprobe analysis. Starting with cubes of Carrara Marble (polycrystalline calcite) and single crystals of calcite, a new solid phosphate phase was observed to incorporate Cd from solution, formed under different pressure and temperature conditions tested. Results showed that Cd precipitated in a new phase on the surface of all samples tested.

View Article and Find Full Text PDF

The coprecipitation of iron (Fe) and phosphorus (P) in natural environments limits their bioavailability. Plant root-secreted organic acids can dissolve Fe-P precipitates, but the molecular mechanism underlying mobilizing biogenic elements from highly insoluble inorganic minerals remains poorly understood. Here, we investigated vivianite (Fe(PO)·8HO) dissolution by organic acids (oxalic acid (OA), citric acid (CA), and 2'-dehydroxymugineic acid (DMA)) at three different pH values (4.

View Article and Find Full Text PDF

With the development of agricultural intensification, phosphorus (P) accumulation in croplands and sediments has resulted in the increasingly widespread interaction between inorganic and organic P species, which has been, previously, underestimated or even ignored. We quantified the nanoscale dissolution kinetics of sparingly soluble brushite (CaHPO·2HO, DCPD) over a broad range of phosphate and/or phytate concentrations by using in situ atomic force microscopy (AFM). Compared to water, we found that low concentrations of phosphate (1-1000 µM) or phytate (1-100 µM) inhibited brushite dissolution by slowing single step retraction.

View Article and Find Full Text PDF

Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems.

View Article and Find Full Text PDF

As a potential phosphorus (P) pool, the enzymatic hydrolysis of organic phosphorus (P) is of fundamental importance due to the release of bioavailable inorganic phosphate (P) for agronomic P sustainability. However, little is known about the role of soil organic matter (SOM) in the hydrolysis process of phytate by phytase and the subsequent chemical behaviors involving the hydrolysis product (P) at different soil interfaces. Here, by using liquid-cell atomic force microscopy (AFM), we present a model system to quantify the nucleation kinetics of phytase-released P when precipitating with representative soil multivalent cations (Ca/Fe) on typical soil mineral/organic interfaces in the presence/absence of humic acid (HA), which involves complex phytase-interface-HA interactions.

View Article and Find Full Text PDF

Changes in the secondary structure of phytase, particularly the conserved active catalytic domain (ACD, SRHGVRAPHD) are extremely important for the varied catalytic activity during hydrolyzing phytate in the presence of humic acid (HA). However, little is known about the molecular-scale mechanisms of how HA influences the secondary structure of ACD found in phytase. First, surface-enhanced Raman spectroscopy (SERS) results show the secondary structure transformation of ACD from the unordered random coil to the ordered β-sheet structure after treatment with HA.

View Article and Find Full Text PDF

Plant cell walls exhibit excellent mechanical properties, which form the structural basis for sustainable bioresources and multifunctional nanocelluloses. The wall nanomechanical properties of living cells through covalent modifications of hybrid inorganic elements, such as silicon, may confer significant influence on local mechano-response and enzymatic degradation. Here, we present a combination of ex situ measurements of enzyme-released oligosaccharide fragments using MALDI-TOF MS and in situ atomic force microscopy (AFM) imaging through PeakForce quantitative nanomechanical mapping of tip-functionalized single-molecule enzyme-polysaccharide substrate recognition and the nanoscale dissolution kinetics of individual cellulose microfibrils of living rice (Oryza sativa) cells following silicate cross-linking of cell wall xyloglucan.

View Article and Find Full Text PDF

Chemical reactions at the mineral-solution interface control important interfacial processes, such as geochemical element cycling, nutrient recovery from eutrophicated waters, sequestration of toxic contaminants, and geological carbon storage by mineral carbonation. By time-resolved in situ imaging of nanoscale mineral interfacial reactions, it is possible to clarify the mechanisms governing mineral-fluid reactions.In this Account, we present a concise summary of this topic that addresses a current challenge at the frontier of understanding mineral interfaces and their importance to a wide range of mineral re-equilibration processes in the presence of a fluid aqueous phase.

View Article and Find Full Text PDF

Amelotin (AMTN) as a matrix protein exerts a direct effect on biomineralization by modulating apatite (HAP) formation during the dental enamel maturation stage through the specific interaction of a potentially phosphorylated Ser-Ser-Glu-Glu-Leu (SSEEL) peptide fragment with calcium phosphate (Ca-P) surfaces. However, the roles of (non)phosphorylation of this evolutionarily conserved subdomain within AMTN remain poorly understood. Here, we show, by time-resolved atomic force microscopy (AFM) imaging of in situ HAP crystallization via the HPO-rich amorphous calcium phosphate (acidic ACP), the on/off switching of the phase transformation process through a nonphosphorylation-to-phosphorylation transition of the SSEEL motif.

View Article and Find Full Text PDF

Phosphorus (P) availability is widely assumed to be limited by the formation of metal (Ca, Fe, or Al) phosphate precipitates that are modulated by soil organic matter (SOM), but the SOM-precipitate interactions remain uncertain because of their environmental complexities. Here, we present a model system by quantifying the in situ nanoscale nucleation kinetics of calcium phosphates (Ca-Ps) on mica in environmentally relevant aqueous solutions by liquid-cell atomic force microscopy. We find that Ca-P precipitate formation is slower when humic acid (HA) concentration is higher.

View Article and Find Full Text PDF

Mineral-soil organic matter (SOM including DNA, proteins, and polysaccharides) associations formed through various interactions, play a key role in regulating long-term SOM preservation. The mechanisms underlying DNA-mineral and DNA-protein/polysaccharide interactions at nanometer and molecular scales in environmentally relevant solutions remain uncertain. Here, we present a model mineral-SOM system consisting of mineral (mica)-nucleic acid (environmental DNA, eDNA)/protein (bovine serum albumin)/polysaccharide (alginate), and combine atomic force microscopy (AFM)-based dynamic force spectroscopy and PeakForce quantitative nanomechanical mapping using DNA-decorated tips.

View Article and Find Full Text PDF

Global soil carbon cycling plays a key role in regulating and stabilizing the earth's climate change because of soils with amounts of carbon at least three times greater than those of other ecological systems. Soil minerals have also been shown to underlie the persistence of soil organic matter (SOM) through both adsorption and occlusion, but the microscopic mechanisms that control the latter process are poorly understood. Here, using time-resolved in situ atomic force microscopy (AFM) to observe how calcite, a representative mineral in alkaline soils, interacts with humic substances, we show that following adsorption, humic substances are gradually occluded by the advancing steps of spirals on the calcite (1014) face grown in relatively high supersaturated solutions, through the embedment, compression, and closure of humic substance particles into cavities.

View Article and Find Full Text PDF

The majority of human kidney stones are composed of multiple calcium oxalate crystals with variable amounts of brushite [dicalcium phosphate dihydrate (DCPD)] and hydroxyapatite (HAP) as a nucleus, in which fluid-mediated dissolution and reprecipitation may result in the phase transformation of DCPD to HAP. However, the underlying mechanisms of the phase transition and its modulation by natural inhibitors, such as osteopontin (OPN) proteins, remain poorly understood. Here, the in vitro formation of new phases on the DCPD (010) surface is observed in situ using atomic force microscopy in a simulated hypercalciuria milieu.

View Article and Find Full Text PDF

Modulation of mineralization and demineralization of calcium phosphates (Ca-Ps) with organic macromolecules is a critical process which prevents human kidney stone disease. As a long unbranched polysaccharide of urinary glycosaminoglycans, chondroitin 4-sulfate (Ch4S) has been shown to play an essential role in inhibiting the formation of kidney stones. However, the mechanism of the role of Ch4S remains poorly understood.

View Article and Find Full Text PDF

Bioavailability and mobility of cadmium (Cd) and arsenate (As) in soils can be effectively lowered through the dissolution of brushite (dicalcium phosphate dihydrate, CaHPO·2HO) coupled with the precipitation of a more stable mineral phase containing both Cd and As. Due to the ubiquitous presence of humic acid (HA) in soil environments, it is more complex to predict the fate of dissolved Cd and As during such sequestration. Here, we used in situ atomic force microscopy (AFM) to image the kinetics of simultaneous precipitation of Cd and As at the brushite-fluid interface in the presence of HA.

View Article and Find Full Text PDF

Phosphorus (P) recovery from wastewater is essential for sustainable P management. A biomimetic hexapeptide (SGAGKT) has been demonstrated to bind inorganic P in P-rich environments, however the dynamics and molecular mechanisms of P-binding to the hexapeptide still remain largely unknown. We used dynamic force spectroscopy (DFS) to directly distinguish the P-unbound and P-bound SGAGKT adsorbed to a mica (001) surface by measuring the single-molecule binding free energy (Δ G).

View Article and Find Full Text PDF

Cadmium (Cd) and Arsenate (As) are the main toxic elements in soil environments and are easily taken up by plants. Unraveling the kinetics of the adsorption and subsequent precipitation/immobilization on mineral surfaces is of considerable importance for predicting the fate of these dissolved species in soils. Here we used in situ atomic force microscopy (AFM) to image the dissolution on the (010) face of brushite (dicalcium phosphate dihydrate, CaHPO·2HO) in CdCl- or NaHAsO-bearing solutions over a broad pH and concentration range.

View Article and Find Full Text PDF

The chemical composition of the continental crust cannot be adequately explained by current models for its formation, because it is too rich in Ni and Cr compared to that which can be generated by any of the proposed mechanisms. Estimates of the crust composition are derived from average sediment, while crustal growth is ascribed to amalgamation of differentiated magmatic rocks at continental margins. Here we show that chemical weathering of Ni- and Cr-rich, undifferentiated ultramafic rock equivalent to ~1.

View Article and Find Full Text PDF

Potential pathways for inhibiting crystal growth are via either disrupting local microenvironments surrounding crystal-solution interfaces or physically blocking solute molecule attachment. However, the actual mode of inhibition may be more complicated due to the characteristic time scale for the inhibitor adsorption and relaxation to a well-bound state at crystal surfaces. Here we demonstrate the role of citrate (CA) and hydroxycitrate (HCA) in brushite (DCPD, CaHPO·2HO) crystallization over a broad range of both inhibitor concentrations and supersaturations by in situ atomic force microscopy (AFM).

View Article and Find Full Text PDF

Antimony, which has damaging effects on the human body and the ecosystem, can be released into soils, ground-, and surface waters either from ore minerals that weather in near surface environments, or due to anthropogenic releases from waste rich in antimony, a component used in batteries, electronics, ammunitions, plastics, and many other industrial applications. Here, we show that dissolved Sb can interact with calcite, a widespread carbonate mineral, through a coupled dissolution-precipitation mechanism. The process is imaged in situ, at room temperature, at the nanometer scale by using an atomic force microscope equipped with a flow-through cell.

View Article and Find Full Text PDF

Calcium oxalate kidney stones form attached to Randall's plaques (RP), calcium phosphate (Ca-P) deposits on the renal papillary surface. Osteopontin (OPN) suppresses crystal growth in the complex process of urinary stone formation, but the inhibitory role of active domains of OPN involved in the initial formation of the RPs attached to epithelial cells has yet to be clarified. Here we demonstrate the thermodynamic basis for how OPN sequences regulate the onset of Ca-P mineral formation on lipid rafts as a model membrane.

View Article and Find Full Text PDF

Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature.

View Article and Find Full Text PDF

In order to evaluate the organic phosphorus (OP) and pyrophosphate (PyroP) cycle and their fate in the environment, it is critical to understand the effects of mineral interfaces on the reactivity of adsorption and precipitation of OP and PyroP. Here, in situ atomic force microscopy (AFM) is used to directly observe the kinetics of coupled dissolution-precipitation on cleaved (001) surfaces of brucite [Mg(OH)] in the presence of phytate, glucose-6-phosphate (G6P) and pyrophosphate, respectively. AFM results show that the relative order of contribution to mineral surface adsorption and precipitation is phytate > pyrophosphate > G6P under the same solution conditions and can be quantified by the induction time of OP/PyroP-Mg nucleation in a boundary layer at the brucite-water interface.

View Article and Find Full Text PDF

As phosphorus (P) resources are diminishing, the recovery of this essential nutrient from wastewaters becomes an increasingly interesting option. P-recovery through the controlled crystallization of struvite (MgNHPO·6HO), a potential slow-release fertilizer, is highly attractive, but costly if large amounts of Mg have to be added. In this context, natural Mg-minerals like brucite (Mg(OH)) could provide more cost-effective Mg-sources compared to high-grade Mg-compounds such as MgCl.

View Article and Find Full Text PDF