In this study, a mask-less laser-assisted patterning method is used to fabricate well-defined cell-adhesive microdomains delimited by protein-repellent poly(ethylene glycol) (PEG) microstructures prepared from multiarm (8-PEG) macromonomers. The response of murine fibroblasts (L-929) toward these microdomains is investigated, revealing effective cell confinement within the cell-adhesive areas surrounded by nonadhesive 8-PEG microstructures. Moreover, the spatial positioning of cells in microdomains of various sizes and geometries is analyzed, indicating control of cell density, size, and elongated cell shape induced by the size of the microdomains and the geometric confinement.
View Article and Find Full Text PDFAlthough several strategies are now available to enzymatically cross-link linear polymers to hydrogels for biomedical use, little progress has been reported on the use of dendritic polymers for the same purpose. Herein, we demonstrate that horseradish peroxidase (HRP) successfully catalyzes the oxidative cross-linking of a hyperbranched polyglycerol (hPG) functionalized with phenol groups to hydrogels. The tunable cross-linking results in adjustable hydrogel properties.
View Article and Find Full Text PDFCellular responses to various gels fabricated by photoinitiated crosslinking using acrylated linear and multi-arm poly(ethylene glycol) (PEG)-based and poly(propylene glycol)-b-poly(ethylene glycol) precursors were investigated. While no protein adsorption and cell adhesion were observed on the hydrophilic PEG-based gels, protein adsorption and cell adhesion did occur on the more hydrophobic gel generated from the block copolymer precursor. Murine fibroblast viability on the poly(ethylene glycol)-based gels was studied in the course of 72 h and the results indicated no cytotoxicity.
View Article and Find Full Text PDF