Publications by authors named "Christine Stockum"

Molecular-genetic control of the flowering time of temperate-climate plants is best understood in Arabidopsis and the cereals wheat and barley. However, key regulators such as FLC and cereal VRN2 are not found in legumes. Therefore, we used forward genetics to identify flowering time genes in the model legume Medicago truncatula (Medicago) which is induced to flower by vernalisation and long-day photoperiods.

View Article and Find Full Text PDF

The liver and the mammary gland have complementary metabolic roles during lactation. Glucose synthesized by the liver is released into the circulation and is taken up by the mammary gland where major metabolic products of glucose include milk sugar (lactose) and the glycerol backbone of milk fat (triglycerides). Hepatic synthesis of glucose is often accompanied by β-oxidation in that organ to provide energy for glucose synthesis, while mammary gland synthesizes rather than oxidizes fat during lactation.

View Article and Find Full Text PDF

The Arabidopsis thaliana (Arabidopsis) GIGANTEA (GI) gene is a central component of the photoperiodic flowering pathway. While it has been 40 years since the first mutant alleles of GI were described much is still unknown about the molecular mechanism of GI action. To investigate the biochemistry and domain organisation (and ultimately to give a greater understanding of the role of GI in floral induction), it is first necessary to produce significant quantities of purified protein.

View Article and Find Full Text PDF

Intercellular transport of the phytohormone auxin is a significant factor for plant organogenesis. To investigate molecular mechanisms by which auxin controls organogenesis, we analyzed the macchi-bou 4 (mab4) mutant identified as an enhancer of pinoid (pid). Although mab4 and pid single mutants displayed relatively mild cotyledon phenotypes, pid mab4 double mutants completely lacked cotyledons.

View Article and Find Full Text PDF