Background: Genome-wide association studies (GWASs) have been widely used to discover the genetic basis of complex phenotypes. However, standard single-SNP GWASs suffer from lack of power. In particular, they do not directly account for linkage disequilibrium, that is the dependences between SNPs (Single Nucleotide Polymorphisms).
View Article and Find Full Text PDFMotivation: Large scale genome-wide association studies (GWAS) are tools of choice for discovering associations between genotypes and phenotypes. To date, many studies rely on univariate statistical tests for association between the phenotype and each assayed single nucleotide polymorphism (SNP). However, interaction between SNPs, namely epistasis, must be considered when tackling the complexity of underlying biological mechanisms.
View Article and Find Full Text PDFDuring the past decade, findings of genome-wide association studies (GWAS) improved our knowledge and understanding of disease genetics. To date, thousands of SNPs have been associated with diseases and other complex traits. Statistical analysis typically looks for association between a phenotype and a SNP taken individually via single-locus tests.
View Article and Find Full Text PDFLinkage disequilibrium study represents a major issue in statistical genetics as it plays a fundamental role in gene mapping and helps us to learn more about human history. The linkage disequilibrium complex structure makes its exploratory data analysis essential yet challenging. Visualization methods, such as the triangular heat map implemented in Haploview, provide simple and useful tools to help understand complex genetic patterns, but remain insufficient to fully describe them.
View Article and Find Full Text PDFProbabilistic graphical models have been widely recognized as a powerful formalism in the bioinformatics field, especially in gene expression studies and linkage analysis. Although less well known in association genetics, many successful methods have recently emerged to dissect the genetic architecture of complex diseases. In this review article, we cover the applications of these models to the population association studies' context, such as linkage disequilibrium modeling, fine mapping and candidate gene studies, and genome-scale association studies.
View Article and Find Full Text PDFBackground: Discovering the genetic basis of common genetic diseases in the human genome represents a public health issue. However, the dimensionality of the genetic data (up to 1 million genetic markers) and its complexity make the statistical analysis a challenging task.
Results: We present an accurate modeling of dependences between genetic markers, based on a forest of hierarchical latent class models which is a particular class of probabilistic graphical models.
J Bioinform Comput Biol
October 2009
Though nowadays high-throughput genotyping techniques' quality improves, missing data still remains fairly common. Studies have shown that even a low percentage of missing SNPs is detrimental to the reliability of down-stream analyses such as SNP-disease association tests. This paper investigates the potentiality for improving the accuracy of an SNP inference method based on the algorithm formerly designed by Roberts and co-workers (NPUTE, 2007).
View Article and Find Full Text PDFThe modelling of gene regulatory networks (GRNs) has classically been addressed through very different approaches. Among others, extensions of Thomas's asynchronous Boolean approach have been proposed, to better fit the dynamics of biological systems: genes may reach different discrete expression levels, depending on the states of other genes, called the regulators: thus, activations and inhibitions are triggered conditionally on the proper expression levels of these regulators. In contrast, some fine-grained propositions have focused on the molecular level as modelling the evolution of biological compound concentrations through differential equation systems.
View Article and Find Full Text PDFThis article compares 32 bacterial genomes with respect to their high transcription potentialities. The sigma70 promoter has been widely studied for Escherichia coli model and a consensus is known. Since transcriptional regulations are known to compensate for promoter weakness (i.
View Article and Find Full Text PDF