Cell permeable peptides (CPP) aid cellular uptake of targeted cargo across the hydrophobic plasma membrane. CPP-mediated cargo delivery of receptor signaling motifs provides an opportunity to regulate specific receptor initiated signaling cascades. Both endothelin-1 receptors, ETA and ETB, have been targets of antagonist therapies for individuals with pulmonary arterial hypertension (PAH).
View Article and Find Full Text PDFTAT (a 13-mer derived from the HIV-1 Tat protein)-linked cell-permeable peptides deliver plasma membrane impermeable cargos into the cell. We investigated the effect of a TAT-linked intracellular third loop of the endothelin-1 type B receptor on endothelin-1 activation of ERK. The effect of this peptide on ERK activation was determined in ETB receptor cDNA-transfected Chinese hamster ovary cells and in ETA- and ETB-expressing human pulmonary artery smooth muscle cells obtained from a normal and a bone morphogenetic protein-2 receptor, exon 1-8 deletion subject, with pulmonary hypertension.
View Article and Find Full Text PDFA cell-penetrating peptide consisting of the second intracellular loop (IC2) of the angiotensin II (AngII) type-I receptor (AT1) linked to the HIV-transactivating regulatory protein (TAT) domain was used to identify the role of this motif In intracellular signal transduction. HEK-293 cells stably transfected with AT1R cDNA and primary cultures of human pulmonary artery smooth muscle cells expressing endogenous AT1 receptor were exposed to the cell-penetrating peptide construct, and the effect on angiotensin II signaling was determined. The AT1 IC2 peptide effectively inhibited AngII-stimulated phosphatidylinositol turnover and calcium influx.
View Article and Find Full Text PDFIntramolecular hydrogen bonding is an important determinant of enzyme structure, catalysis, and inhibitor action. Monoacylglycerol lipase (MGL) modulates cannabinergic signaling as the main enzyme responsible for deactivating 2-arachidonoylglycerol (2-AG), a primary endocannabinoid lipid messenger. By enhancing tissue-protective 2-AG tone, targeted MGL inhibitors hold therapeutic promise for managing pain and treating inflammatory and neurodegenerative diseases.
View Article and Find Full Text PDFAmide proton NMR signals from the N-terminal domain of monomeric alpha-synuclein (alphaS) are lost when the sample temperature is raised from 10 degrees C to 35 degrees C at pH 7.4. Although the temperature-induced effects have been attributed to conformational exchange caused by an increase in alpha-helix structure, we show that the loss of signals is due to fast amide proton exchange.
View Article and Find Full Text PDFAgrin is a key heparan sulfate proteoglycan involved in the development and maintenance of synaptic junctions between nerves and muscles. Agrin's important functions include clustering acetylcholine receptors on the postsynaptic membranes of muscles and binding to the muscle protein alpha-dystroglycan through its glycan chains. ITC and NMR were used to study the interactions of the C-terminal domain, agrin-G3, with carbohydrates implicated in agrin's functions.
View Article and Find Full Text PDFThe invariance of NMR residual dipolar couplings (RDCs) in denatured forms of staphylococcal nuclease to changes in denaturant concentration or amino acid sequence has previously been attributed to the robustness of long-range structure in the denatured state. Here we compare RDCs of the wild-type nuclease with those of a fragment that retains a folded OB-fold subdomain structure despite missing the last 47 of 149 residues. The RDCs of the intact protein and of the truncation fragment are substantially different under conditions that favor folded structure.
View Article and Find Full Text PDF