Objectives: We aimed to analyze the false-negative (FN) liquid-based cytology diagnoses from the 5 years preceding all the 2013 histologically proven cervical intraepithelial neoplasia (CIN)2-3 and squamous cell carcinoma (SCC) and to propose corrective actions.
Study Design: This was a retrospective, blinded rescreening ('5-year look-back') of liquid-based cytology samples with negative categorizations, which occurred before histologically proven CIN2-3 and SCC.
Results: The FN rate was 7.
Major histocompatibility complex (MHC) class I molecules comprise a family of polymorphic cell surface receptors consisting of classical 1 a molecules that present antigenic peptides and nonclassical 1 b molecules. Gene expression for human classical and nonclassical MHC class I molecules has been shown to be differentially regulated by interferon, with variation in the nucleotide sequence of promoter regions, resulting in differences in interferon inducibility and basal levels of gene transcription. In this study on porcine classical and nonclassical swine leukocyte Ag (SLA) class I molecules, we show alignments of putative regulatory elements in the promoters of the three functional classical class I genes, SLA-1, SLA-2, and SLA-3; two nonclassical 1 b genes, SLA-6 and SLA-7; and a MIC-2 gene.
View Article and Find Full Text PDFBackground: On porcine chromosome 7, the region surrounding the Major Histocompatibility Complex (MHC) contains several Quantitative Trait Loci (QTL) influencing many traits including growth, back fat thickness and carcass composition. Previous studies highlighted that a fragment of approximately 3.7 Mb is located within the Swine Leucocyte Antigen (SLA) complex.
View Article and Find Full Text PDFContinuous genomic sequence has been previously determined for the swine leukocyte antigen (SLA) class I region from the TNF gene cluster at the border between the major histocompatibility complex (MHC) class III and class I regions to the UBD gene at the telomeric end of the classical class I gene cluster (SLA-1 to SLA-5, SLA-9, SLA-11). To complete the genomic sequence of the entire SLA class I genomic region, we have analyzed the genomic sequences of two BAC clones carrying a continuous 237,633-bp-long segment spanning from the TRIM15 gene to the UBD gene located on the telomeric side of the classical SLA class I gene cluster. Fifteen non-class I genes, including the zinc finger and the tripartite motif (TRIM) ring-finger-related family genes and olfactory receptor genes, were identified in the 238-kilobase (kb) segment, and their location in the segment was similar to their apparent human homologs.
View Article and Find Full Text PDFWe developed 40 microsatellite markers in the entire swine leukocyte antigen (SLA) region, spanning over 2.35 Mb. The average span between markers was 59 kb, and the largest interval between markers was 127 kb.
View Article and Find Full Text PDFThe aim of this study was to establish a porcine physical map along the chromosome SSC7q by construction of BAC contigs between microsatellites Sw1409 and S0102. The SLA class II contig, located on SSC7q, was lengthened. Four major BAC contigs and 10 short contigs span a region equivalent to 800 cR measured by IMpRH7000 mapping.
View Article and Find Full Text PDFIn human familial melanoma, 3 risk susceptibility genes are already known, CDKN2A, CDK4 and MC1R. However, various observations suggest that other melanoma susceptibility genes have not yet been identified. To search for new susceptibility loci, we used the MeLiM swine as an animal model of hereditary melanoma to perform a genome scan for linkage to melanoma.
View Article and Find Full Text PDFMore than 990 kb of the 1200 kb in the SLA class I region of the pig major histocompatibility complex (MHC) have been sequenced. The present study was designed to establish the evolution of this region which was best understood by distinguishing three periods. The most recent period, which extended from 40 to 15 mya, probably corresponded to five rounds of duplication of a basic unit.
View Article and Find Full Text PDFGenome analysis of the swine leukocyte antigen ( SLA) region is needed to obtain information on the MHC genomic sequence similarities and differences between the swine and human, given the possible use of swine organs for xenotransplantation. Here, the genomic sequences of a 433-kb segment located between the non-classical and classical SLA class I gene clusters were determined and analyzed for gene organization and contents of repetitive sequences. The genomic organization and diversity of this swine non-class I gene region was compared with the orthologous region of the human leukocyte antigen ( HLA) complex.
View Article and Find Full Text PDFOn porcine Chromosome 7, the region surrounding the MHC region contains QTL influencing many traits including growth, back fat thickness, and carcass composition. Towards the identification of the responsible gene(s), this article describes an increase of density of the radiated hybrid map of SSC 7 in the q11-q14 region and the comparative analysis of gene order on the porcine RH map and human genome assembly. Adding 24 new genes in this region, we were able to build a framework map that fills in gaps on the previous maps.
View Article and Find Full Text PDFSome herds of miniature swine are genetically predisposed to cutaneous melanoma. To test if swine melanoma susceptibility could be linked to the CDKN2A gene, which is involved in a proportion of 9p21-linked human familial melanoma, we performed a genetic analysis of miniature pigs of the MeLiM strain. F(1) and backcross animals were generated by crossing 1 MeLiM boar with healthy Duroc sows.
View Article and Find Full Text PDFA quantitative trait locus (QTL) analysis of carcass composition data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. A total of 488 F2 males issued from six F1 boars and 23 F1 sows, the progeny of six LW boars and six MS sows, were slaughtered at approximately 80 kg live weight and were submitted to a standardised cutting of the carcass. Fifteen traits, i.
View Article and Find Full Text PDF