DNA sample contamination is a major issue in clinical and research applications of whole-genome and -exome sequencing. Even modest levels of contamination can substantially affect the overall quality of variant calls and lead to widespread genotyping errors. Currently, popular tools for estimating the contamination level use short-read data (BAM/CRAM files), which are expensive to store and manipulate and often not retained or shared widely.
View Article and Find Full Text PDFDNA sample contamination is a major issue in clinical and research applications of whole genome and exome sequencing. Even modest levels of contamination can substantially affect the overall quality of variant calls and lead to widespread genotyping errors. Currently, popular tools for estimating the contamination level use short-read data (BAM/CRAM files), which are expensive to store and manipulate and often not retained or shared widely.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
December 2018
Protein homeostasis is tightly regulated by the ubiquitin proteasome pathway. Disruption of this pathway gives rise to a host of neurological disorders. Through whole exome sequencing (WES) in families with neurodevelopmental disorders, we identified mutations in PSMD12, a core component of the proteasome, underlying a neurodevelopmental disorder with intellectual disability (ID) and features of autism spectrum disorder (ASD).
View Article and Find Full Text PDFSensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons.
View Article and Find Full Text PDFBackground And Aims: More than 80% of Crohn's disease (CD) patients will require surgery. Surgery is not curative and rates of re-operation are high. Identification of genetic variants associated with repeat surgery would allow risk stratification of patients who may benefit from early aggressive therapy and/or post-operative prophylactic treatment.
View Article and Find Full Text PDFDespite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1).
View Article and Find Full Text PDFWhole-exome sequencing (WES), which analyzes the coding sequence of most annotated genes in the human genome, is an ideal approach to studying fully penetrant autosomal-recessive diseases, and it has been very powerful in identifying disease-causing mutations even when enrollment of affected individuals is limited by reduced survival. In this study, we combined WES with homozygosity analysis of consanguineous pedigrees, which are informative even when a single affected individual is available, to identify genetic mutations responsible for Walker-Warburg syndrome (WWS), a genetically heterogeneous autosomal-recessive disorder that severely affects the development of the brain, eyes, and muscle. Mutations in seven genes are known to cause WWS and explain 50%-60% of cases, but multiple additional genes are expected to be mutated because unexplained cases show suggestive linkage to diverse loci.
View Article and Find Full Text PDFAlthough autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families.
View Article and Find Full Text PDFUlcerative colitis is a chronic, relapsing inflammatory condition of the gastrointestinal tract with a complex genetic and environmental etiology. In an effort to identify genetic variation underlying ulcerative colitis risk, we present two distinct genome-wide association studies of ulcerative colitis and their joint analysis with a previously published scan, comprising, in aggregate, 2,693 individuals with ulcerative colitis and 6,791 control subjects. Fifty-nine SNPs from 14 independent loci attained an association significance of P < 10(-5).
View Article and Find Full Text PDFBackground: Early-onset disease is frequently examined in genetic studies because it is presumed to contain a more severe subset of patients under a higher influence of genetic effects. In light of the dramatic success of Crohn's disease (CD) gene discovery efforts, we aimed to characterize the contribution of established common risk variants to pediatric CD.
Methods: Using 35 confirmed CD risk alleles, we genotyped 384 parent-child trios (mean age of onset 11.
The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits - multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), and rheumatoid arthritis (RA) - in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases.
View Article and Find Full Text PDFThe association of the major histocompatibility complex (MHC) with SLE is well established yet the causal variants arising from this region remain to be identified, largely due to inadequate study design and the strong linkage disequilibrium demonstrated by genes across this locus. The majority of studies thus far have identified strong association with classical class II alleles, in particular HLA-DRB1*0301 and HLA-DRB1*1501. Additional associations have been reported with class III alleles; specifically, complement C4 null alleles and a tumor necrosis factor promoter SNP (TNF-308G/A).
View Article and Find Full Text PDF