Publications by authors named "Christine P Etler"

Objective: Minimally traumatic surgical techniques and advances in cochlear implant (CI) electrode array designs have allowed acoustic hearing present in a CI candidate prior to surgery to be preserved postoperatively. As a result, these patients benefit from combined electric-acoustic stimulation (EAS) postoperatively. However, 30% to 40% of EAS CI users experience a partial loss of hearing up to 30 dB after surgery.

View Article and Find Full Text PDF

There is considerable interest in understanding cortical processing and the function of top-down and bottom-up human neural circuits that control speech production. Research efforts to investigate these circuits are aided by analysis of spectro-temporal response characteristics of neural activity recorded by electrocorticography (ECoG). Further, cortical processing may be altered in the case of hearing-impaired cochlear implant (CI) users, as electric excitation of the auditory nerve creates a markedly different neural code for speech compared with that of the functionally intact hearing system.

View Article and Find Full Text PDF

Objective: Characterize hearing loss (HL) after hearing preservation cochlear implantation and determine the association between high charge electrical stimulation (ES) and late loss of acoustic hearing.

Methods: A retrospective cohort analysis of all hearing preservation implantees at our center (n = 42) assayed HL as a function of maximum charge. We analyzed serial audiometry from 85 patients enrolled in the multicenter Hybrid S8 trial to detail the hearing loss greater than 1 month after implantation.

View Article and Find Full Text PDF

Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects.

View Article and Find Full Text PDF

Objectives: To determine the extent to which electrically evoked compound action potential (ECAP) measurements were related with speech perception performance in implant users with a short electrode array and to investigate the relationship between ECAP measures and performance according to specific devices.

Design: Prospective study.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Background: In the mid-1990s, Cochlear Corporation introduced a cochlear implant (CI) to the market that was equipped with hardware that made it possible to record electrically evoked compound action potentials (ECAPs) from CI users of all ages. Over the course of the next decade, many studies were published that compared ECAP thresholds with levels used to program the speech processor of the Nucleus CI. In 2001 Advanced Bionics Corporation introduced the Clarion CII cochlear implant (the Clarion CII internal device is also known as the CII Bionic Ear).

View Article and Find Full Text PDF

Objectives: The purpose of this study was to determine whether the electrically evoked acoustic change complex (EACC) could be used to assess sensitivity to changes in stimulus level in cochlear implant (CI) recipients and to investigate the relationship between EACC amplitude and rate of growth of the N1-P2 onset response with increases in stimulus level.

Design: Twelve postlingually deafened adults using Nucleus CI24 CIs participated in this study. Nucleus Implant Communicator (NIC) routines were used to bypass the speech processor and to control the stimulation of the implant directly.

View Article and Find Full Text PDF