Yeast extract (YE) is a complex nutritional source associated with high performance on microbial production processes. However, its inherent compositional variability challenges its scalability. While prior efforts have focused on growth-associated products, the dynamics of growth-uncoupled production, which leads to higher production rates and conversion yields, still need to be explored.
View Article and Find Full Text PDFBiomanufacturing is emerging as a key technology for the sustainable production of chemicals, materials, and food ingredients using engineered microbes. However, despite billions of dollars of investment, few processes have been successfully commercialized due to a lack of attention on industrial-scale bioprocess design and innovation. In this study, we address this challenge through the development of a novel semi-continuous bioprocess for the production of the terpene amorpha-4,11-diene (AMD4,11) using engineered Escherichia coli.
View Article and Find Full Text PDFAmorpha-4,11-diene (AMD4,11) is a precursor to artemisinin, a potent antimalarial drug that is traditionally extracted from the shrubs of Artemisia annua. Despite significant prior efforts to produce artemisinin and its precursors through biotechnology, there remains a dire need for more efficient biosynthetic routes for its production. Here, we describe the optimization of key process conditions for an Escherichia coli strain producing AMD4,11 via the native methylerythritol phosphate (MEP) pathway.
View Article and Find Full Text PDFThe goal of strain optimization is to create high-performance strains producing compounds of interest at a high titer, yield, and volumetric productivity. The effectiveness of strain optimization relies on methodologies used to aid optimization of native or novel pathways within cells. Many different factors, including mRNA abundance, protein abundance, and enzyme activity/stability, will contribute to the strain performance, which is not often evident by simply monitoring product titers.
View Article and Find Full Text PDFDespite the potential in utilizing microbial fermentation for chemical production, the field of industrial biotechnology still lacks a standard, universally applicable principle for strain optimization. A key challenge has been in finding and applying effective ways to address metabolic flux imbalances. Strategies based on rational design require significant a priori knowledge and often fail to take a holistic view of cellular metabolism.
View Article and Find Full Text PDFHere we describe an advanced paradigm for the design, construction and stable implementation of complex biological systems in microbial organisms. This engineering strategy was previously applied to the development of an Escherichia coli-based platform, which enabled the use of brown macroalgae as a feedstock for the production of biofuels and renewable chemicals. In this approach, functional genetic modules are first designed in silico and constructed on a bacterial artificial chromosome (BAC) by using a recombineering-based inchworm extension technique.
View Article and Find Full Text PDFThe increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus.
View Article and Find Full Text PDFEvaluating the performance of engineered biological systems with high accuracy and precision is nearly impossible with the use of plasmids due to phenotypic noise generated by genetic instability and natural population dynamics. Minimizing this uncertainty therefore requires a paradigm shift towards engineering at the genomic level. Here, we introduce an advanced design principle for the stable installment and implementation of complex biological systems through recombinase-assisted genome engineering (RAGE).
View Article and Find Full Text PDFAlthough microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine screen towards improving L-tyrosine production in Escherichia coli. This methodology succeeded in generating three strains from two separate mutagenesis libraries (rpoA and rpoD) exhibiting up to a 114% increase in L-tyrosine titer over a rationally engineered parental strain with an already high capacity for production.
View Article and Find Full Text PDFProspecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate.
View Article and Find Full Text PDFThe development of efficient microbial processes for the production of flavonoids has been a metabolic engineering goal for the past several years, primarily due to the purported health-promoting effects of these compounds. Although significant strides have been made recently in improving strain titers and yields, current fermentation strategies suffer from two major drawbacks-(1) the requirement for expensive phenylpropanoic precursors supplemented into the media and (2) the need for two separate media formulations for biomass/protein generation and flavonoid production. In this study, we detail the construction of a series of strains capable of bypassing both of these problems.
View Article and Find Full Text PDFCombinatorial or random methods for strain engineering have been extensively used for the improvement of multigenic phenotypes and other traits for which the underlying mechanism is not fully understood. Although the preferred method has traditionally been mutagenesis and selection, our laboratory has successfully used mutant transcription factors, which direct the RNA polymerase (RNAP) during transcription, to engineer complex phenotypes in microbial cells. Here, we show that it is also possible to impart new phenotypes by altering the RNAP core enzyme itself, in particular through mutagenesis of the alpha subunit of the bacterial polymerase.
View Article and Find Full Text PDFCurr Opin Chem Biol
April 2008
Although random mutagenesis and screening and evolutionary engineering have long been the gold standards for strain improvement in industry, the development of more sophisticated recombinant DNA tools has led to the introduction of alternate methods for engineering strain diversity. Here, we summarize several combinatorial cell optimization methods developed in recent years, many of which are more amenable to phenotypic transfer and more efficient in probing greater dimensions of the available phenotypic space. They include tools that enable the fine-tuning of pathway expression (synthetic promoter libraries, tunable intergenic regions (TIGRs)), methods for generating randomized knockout and overexpression libraries, and more global techniques (artificial transcription factor engineering, global transcription machinery engineering, ribosome engineering, and genome shuffling) for eliciting complex, multigenic cellular properties.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2008
We present the development of a simple, high-throughput screen for identifying bacterial strains capable of L-tyrosine production. Through the introduction of a heterologous gene encoding a tyrosinase, we were able to link L-tyrosine production in Escherichia coli with the synthesis of the black and diffusible pigment melanin. Although melanin was initially produced only at low levels in morpholinepropanesulfonic acid (MOPS) minimal medium, phosphate supplementation was found to be sufficient for increasing both the rates of synthesis and the final titers of melanin.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2007
The aromatic amino acid L-tyrosine is used as a dietary supplement and has promise as a valuable precursor compound for various industrial and pharmaceutical applications. In contrast to chemical production, biotechnological methods can produce L-tyrosine from biomass feedstocks under environmentally friendly and near carbon-free conditions. In this minireview, various strategies for synthesizing L-tyrosine by employing biocatalysts are discussed, including initial approaches as well as more recent advances.
View Article and Find Full Text PDF