Publications by authors named "Christine Moung"

Somatic hypermutation status of the IGHV gene is essential for treating patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Unlike the conventional low-throughput method, assessment of somatic hypermutation by next-generation sequencing (NGS) has potential for uniformity and scalability. However, it lacks standardization or guidelines for routine clinical use.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is associated with hematologic and solid tumors. We utilized a hybridization capture-based next-generation sequencing (NGS) platform targeting 400 genes associated with hematological malignancies to detect and quantify nontargeted viral-derived EBV reads that aligned to the EBV reference contig (NC_007605). We evaluated 5234 samples from 3636 unique patients with hematological neoplasms and found that 100 samples (1.

View Article and Find Full Text PDF

Circulating cell-free DNA from blood plasma of cancer patients can be used to non-invasively interrogate somatic tumor alterations. Here we develop MSK-ACCESS (Memorial Sloan Kettering - Analysis of Circulating cfDNA to Examine Somatic Status), an NGS assay for detection of very low frequency somatic alterations in 129 genes. Analytical validation demonstrated 92% sensitivity in de-novo mutation calling down to 0.

View Article and Find Full Text PDF

Mutations in the epidermal growth factor receptor (EGFR) are the most common targetable alterations in lung adenocarcinoma. To facilitate rapid testing, the Idylla EGFR assay was incorporated as a screening method before next-generation sequencing (NGS). Validation and experience using an in-house developed analysis pipeline, enhanced with a manual review algorithm is described.

View Article and Find Full Text PDF

The 2016 International Myeloma Working Group consensus recommendations emphasize high-sensitivity methods for minimal residual disease (MRD) detection, treatment response assessment, and prognostication. Next-generation sequencing (NGS) of IGH gene rearrangements is highly specific and sensitive, but its description in routine clinical practice and performance comparison with high-sensitivity flow cytometry (hsFC) remain limited. In this large, single-institution study including 438 samples from 251 patients, the use of NGS targeting the IGH and IGK genes for clonal characterization and monitoring, with comparison to hsFC, is described.

View Article and Find Full Text PDF

BACKGROUNDAdoptive transfer of donor-derived EBV-specific cytotoxic T-lymphocytes (EBV-CTLs) can eradicate EBV-associated lymphomas (EBV-PTLD) after transplantation of hematopoietic cell (HCT) or solid organ (SOT) but is unavailable for most patients.METHODSWe developed a third-party, allogeneic, off-the-shelf bank of 330 GMP-grade EBV-CTL lines from specifically consented healthy HCT donors. We treated 46 recipients of HCT (n = 33) or SOT (n = 13) with established EBV-PTLD, who had failed rituximab therapy, with third-party EBV-CTLs.

View Article and Find Full Text PDF

Immunoglobulin heavy chain (IGH) clonality testing by next-generation sequencing (NGS) offers unique advantages over current low-throughput methods in the assessment of B-cell lineage neoplasms. Clinical use remains limited because assays are not standardized and validation/implementation guidelines are not yet developed. Herein, we describe our clinical validation and implementation of NGS IGH clonality testing and summarize our experience based on extensive routine use.

View Article and Find Full Text PDF

Background: Allogeneic hematopoietic stem cell donor selection is based primarily on human leukocyte antigen degree of match and it often occurs without regard to the red blood cell (RBC) compatibility between donor and recipient. When major ABO-mismatched grafts are infused, it is imperative that an accurate determination of the incompatible RBC content is made to ensure that the product is safe for infusion. RBC content determination requires the hematocrit (Hct) parameter which can be obtained via manual (directly measured) or automated (calculated) methods.

View Article and Find Full Text PDF

Background: Successful peripheral blood stem cell transplantation (PBSCT) depends on the collection and infusion of adequate numbers of peripheral blood progenitor cells (PBPCs). Several predictors of PBPC yield are used currently, including white blood cell (WBC) count and CD34 analysis. This study evaluated the utility of the new automated hematopoietic progenitor cell count available on Sysmex XN hematology analyzers (XN-HPCs) in PBSCT.

View Article and Find Full Text PDF

Background: Atypical duct hyperplasia (ADH) observed during core needle biopsy is associated with a high rate of cancer upon excision. Controversy exists regarding the need to re-excise ADH involving a margin. The purpose of this study was to determine the rate of residual pathology in patients that underwent re-excision for ADH involving the margin.

View Article and Find Full Text PDF