Publications by authors named "Christine Mouffle"

Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood.

View Article and Find Full Text PDF

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • * Research found that NEPs, particularly those in the floor plate of the spinal cord, can generate large action potentials through the activation of T-type calcium channels and are interconnected via gap junctions, forming a functional electrical syncytium.
  • * Acetylcholine released from motoneurons triggers these action potentials in floor-plate NEPs, leading to the propagation of calcium waves throughout the spinal cord, indicating a unique mechanism for electrical signaling independent of neurons.
View Article and Find Full Text PDF
Article Synopsis
  • Renshaw cells (V1) in the spinal cord are active soon after they settle next to motoneurons and show functional differences throughout their development.
  • The study used various experimental methods along with modeling to investigate the changes in V1's electrical properties during early mouse embryonic stages (E11.5-E16.5).
  • Key findings indicate that the diversity in firing patterns of embryonic V1 is influenced by the balance of sodium and potassium conductances, leading to a phase where these cells temporarily lose their ability to sustain continuous firing.
View Article and Find Full Text PDF

Astrocytes are a major type of glial cell in the mammalian brain, essentially regulating neuronal development and function. Quantitative imaging represents an important approach to study astrocytic signaling in neural circuits. Focusing on astrocytic Ca activity, a key pathway implicated in astrocye-neuron interaction, we here report a strategy combining fast light sheet fluorescence microscopy (LSFM) and correlative screening-based time series analysis, to map activity domains in astrocytes in living mammalian nerve tissue.

View Article and Find Full Text PDF

Microglia are known to regulate several aspects of the development of the central nervous system. When microglia colonize the spinal cord, from E11.5 in the mouse embryo, they interact with growing central axons of dorsal root ganglion sensory neurons (SNs), which suggests that they may have some functions in SN development.

View Article and Find Full Text PDF

Spontaneous network activity (SNA) emerges in the spinal cord (SC) before the formation of peripheral sensory inputs and central descending inputs. SNA is characterized by recurrent giant depolarizing potentials (GDPs). Because GDPs in motoneurons (MNs) are mainly evoked by prolonged release of GABA, they likely necessitate sustained firing of interneurons.

View Article and Find Full Text PDF

Virtually all oligodendrocyte precursors cells (OPCs) receive glutamatergic and/or GABAergic synapses that are lost upon their differentiation into oligodendrocytes in the postnatal and adult brain. Although OPCs are generated at mid-embryonic stages, several weeks before the onset of myelination, it remains unknown when and where OPCs receive their first synapses and become susceptible to the influence of neuronal activity. In the embryonic spinal cord, neuro-epithelial precursors in the pMN domain cease generating cholinergic motor neurons (MNs) to produce OPCs when the first synapses are formed in the ventral-lateral marginal zone.

View Article and Find Full Text PDF

Recovery from traumatic spinal cord injury (SCI) usually fails due to a cascade of cellular and molecular events that compromise neural tissue reconstitution by giving rise to glial scarring and cavity formation. We designed a scaffold material for SCI treatment containing only chitosan and water as fragmented physical hydrogel suspension (Chitosan-FPHS), with defined degree of acetylation (DA), polymer concentration, and mean fragment size. Implantation of Chitosan-FPHS alone into rat spinal cord immediately after a bilateral dorsal hemisection promoted reconstitution of spinal tissue and vasculature, and diminished fibrous glial scarring: with astrocyte processes primarily oriented towards the lesion, the border between lesion site and intact tissue became permissive for regrowth of numerous axons into, and for some even beyond the lesion site.

View Article and Find Full Text PDF

A remarkable feature of early neuronal networks is their endogenous ability to generate spontaneous rhythmic electrical activity independently of any external stimuli. In the mouse embryonic SC, this activity starts at an embryonic age of ∼ 12 d and is characterized by bursts of action potentials recurring every 2-3 min. Although these bursts have been extensively studied using extracellular recordings and are known to play an important role in motoneuron (MN) maturation, the mechanisms driving MN activity at the onset of synaptogenesis are still poorly understood.

View Article and Find Full Text PDF