Step-by-step (SBS) stair navigation is used by those with movement limitations or lower-limb prosthetics and by humanoid robots. Knowledge of biomechanical parameters for SBS gait, however, is limited. Inverted pendulum (IP) models used to assess dynamic stability have not been applied to SBS gait.
View Article and Find Full Text PDFBackground: Genetic and epigenetic programs regulate dramatic structural changes during cardiac morphogenesis. Concurrent biomechanical forces within the heart created by blood flow and pressure in turn drive downstream cellular, molecular and genetic responses. Thus, a genetic-morphogenetic-biomechanical feedback loop is continually operating to regulate heart development.
View Article and Find Full Text PDFBalance-recovery stepping is often necessary for both a human and humanoid robot to avoid a fall by taking a single step or multiple steps after an external perturbation. The determination of where to step to come to a complete stop has been studied, but little is known about the strategy for initiation of forward motion from the static position following such a step. The goal of this study was to examine the human strategy for stepping by moving the back foot forward from a static, double-support position, comparing parameters from normal step length (SL) to those from increasing SLs to the point of step failure, to provide inspiration for a humanoid control strategy.
View Article and Find Full Text PDFCharacterization of the mechanical properties of biological materials is often complicated by small volume, irregular geometry, fragility, and environmental sensitivity. Pipette aspiration and nanoindentation testing deal well with these limitations and have seen increasing use in biomaterial characterization, but little research has been done to systematically validate these techniques for soft materials. This study compared the results of pipette aspiration, nanoindentation, and bulk uniaxial tension and compression in determining the small-strain elastic moduli of a range of biomedically-relevant materials, a series of silicone elastomers and polyacrylamide hydrogels.
View Article and Find Full Text PDF