Publications by authors named "Christine Maynard"

Acid mine drainage (AMD) is considered as one of the most important global environmental challenges. Therefore, understanding the impact of AMD on the diversity of microbial communities associated with native plants is important for phytoremediation. In this study, the community assembly and microbial diversity associated with native plants growing along an AMD impact gradient was investigated using metabarcoding and high throughput iChip technique.

View Article and Find Full Text PDF

With an on-going disproportional warming of the Arctic Ocean and the reduction of the sea ice cover, the risk of an accidental oil spill from ships or future oil exploration is increasing. It is hence important to know how crude oil weathers in this environment and what factors affect oil biodegradation in the Arctic. However, this topic is currently poorly studied.

View Article and Find Full Text PDF

In 1999, a tidal wetland located along the St. Lawrence River close to Ste. Croix de Lotbinière (Quebec, Eastern Canada) was the site of an experimental oil spill.

View Article and Find Full Text PDF

Draft whole-genome sequences of a coculture are presented. One component was a polar cyanobacterium, sp. strain Cla-17.

View Article and Find Full Text PDF

Alkane biosynthesis by polar cyanobacteria has not yet been reported. We present here the draft whole-genome sequence of an alkane-synthesizing polar cyanobacterium, strain O-153. The genes coding for the two key enzymes involved in the alkane biosynthetic pathway were found contiguously in the genome.

View Article and Find Full Text PDF

Manufactured Zn oxide nanoparticle (ZnO-NP) are extensively used world-wide in personal care and industrial products and are important contaminants of aquatic environments. To understand the overall impact of ZnO-NP contamination on aquatic ecosystems, investigation of their toxicity on aquatic biofilms is of particular consequence, given biofilms are known sinks for NP contaminants. In order to assess alterations in the functional activity of river microbial biofilm communities as a result of environmentally-relevant ZnO-NP exposure, biofilms were exposed to ionic zinc salt or ZnOPs that were uncoated (hydrophilic), coated with silane (hydrophobic) or stearic acid (lipophilic), at a total concentration of 188 μg l Zn.

View Article and Find Full Text PDF
Article Synopsis
  • Using willows for cleaning up polluted soils is seen as a better way than digging up dirt and throwing it away.
  • Scientists studied different willow types to understand how they interact with tiny organisms in the soil, especially when the soil is contaminated with oil.
  • They found that some willow species handle pollution better than others, and that the soil's pollution changes how both the willows and the soil microbes work together.
View Article and Find Full Text PDF

A bacterium capable of degrading five microcystin (MC) variants, microcystin-LR, YR, LY, LW and LF at an initial total concentration of 50 μg l in less than 16 hours was isolated from Missisquoi Bay, in the south of Quebec, Canada. Phylogenetic analysis of the 16S rRNA gene sequence identified the bacterium as Sphingopyxis sp., designated strain MB-E.

View Article and Find Full Text PDF

Plants interact closely with microbes, which are partly responsible for plant growth, health, and adaptation to stressful environments. Engineering the plant-associated microbiome could improve plant survival and performance in stressful environments such as contaminated soils. Here, willow cuttings were planted into highly petroleum-contaminated soils that had been gamma-irradiated and subjected to one of four treatments: inoculation with rhizosphere soil from a willow that grew well (LA) or sub-optimally (SM) in highly contaminated soils or with bulk soil in which the planted willow had died (DE) or no inoculation (CO).

View Article and Find Full Text PDF

Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.

View Article and Find Full Text PDF

The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use.

View Article and Find Full Text PDF

Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation.

View Article and Find Full Text PDF

Although the number of Escherichia coli bacteria in surface waters can differ greatly between locations, relatively little is known about the distribution of E. coli pathotypes in surface waters used as sources for drinking or recreation. DNA microarray technology is a suitable tool for this type of study due to its ability to detect high numbers of virulence and antimicrobial resistance genes simultaneously.

View Article and Find Full Text PDF

Escherichia coli is generally described as a commensal species with occasional pathogenic strains. Due to technological limitations, there is currently little information concerning the prevalence of pathogenic E. coli strains in the environment.

View Article and Find Full Text PDF

An oligonucleotide microarray detecting 189 Escherichia coli virulence genes or markers and 30 antimicrobial resistance genes was designed and validated using DNA from known reference strains. This microarray was confirmed to be a powerful diagnostic tool for monitoring emerging E. coli pathotypes and antimicrobial resistance, as well as for environmental, epidemiological, and phylogenetic studies including the evaluation of genome plasticity.

View Article and Find Full Text PDF

A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E.

View Article and Find Full Text PDF

A microarray method for bacterial species identification based on cpn60 and 16S rDNA hybridization was developed. Specific cpn60 or 16S rDNA oligonucleotides from various Helicobacter or Campylobacter species were printed and immobilized onto a proprietary plastic solid support. Using universal primers, fragments derived from either cpn60 or 16S rDNA genes from single isolates or from a complex human waste sludge DNA sample spiked with Helicobacter pylori were biotinylated and hybridized to the plastic slide.

View Article and Find Full Text PDF

Extraintestinal pathogenic Escherichia coli (ExPEC) isolates collected from different infected animals and from human patients with extraintestinal infections in 2001 were characterized for their phenotypic and genotypic antimicrobial resistance profiles, genotypes, and key virulence factors. Among the 10 antimicrobial agents tested, resistance to ampicillin, tetracycline, and sulfonamides was most frequent. Multiresistant strains were found in both the animal and the human groups of isolates.

View Article and Find Full Text PDF

A total of 112 Escherichia coli O149:K91 strains isolated from pigs with diarrhea in Quebec, Canada, between 1978 and 2000 were characterized for their genotypic antimicrobial resistance profiles. Tests for resistance to 10 antimicrobial agents were conducted. Resistance to tetracycline and sulfonamides was found to be the most frequent, but resistance to cefotaxime and ceftiofur was absent.

View Article and Find Full Text PDF