Background And Objectives: Hereditary spastic paraplegia (HSP) causes progressive spasticity and weakness of the lower limbs. As neurologic examination and the clinical Spastic Paraplegia Rating Scale (SPRS) are subject to potential patient-dependent and clinician-dependent bias, instrumented gait analysis bears the potential to objectively quantify impaired gait. The aim of this study was to investigate gait cyclicity parameters by application of a mobile gait analysis system in a cross-sectional cohort of patients with HSP and a longitudinal fast progressing subcohort.
View Article and Find Full Text PDFObjective: Gait impairment is the cardinal motor symptom in hereditary spastic paraplegias (HSPs) possibly linked to increased fear of falling and reduced quality of life (QoL). Disease specific symptoms in HSP are rated using the Spastic Paraplegia Rating Scale (SPRS). However, limited studies evaluated more objectively easy-to-apply gait measures by comparing these standardized assessments with patients' self-perceived impairment and clinically established scores.
View Article and Find Full Text PDFMachine learning is a promising approach to evaluate human movement based on wearable sensor data. A representative dataset for training data-driven models is crucial to ensure that the model generalizes well to unseen data. However, the acquisition of sufficient data is time-consuming and often infeasible.
View Article and Find Full Text PDFThe evaluation of trajectory reconstruction of the human body obtained by foot-mounted Inertial Pedestrian Dead-Reckoning (IPDR) methods has usually been carried out in controlled environments, with very few participants and limited to walking. In this study, a pipeline for trajectory reconstruction using a foot-mounted IPDR system is proposed and evaluated in two large datasets containing activities that involve walking, jogging, and running, as well as movements such as side and backward strides, sitting, and standing. First, stride segmentation is addressed using a multi-subsequence Dynamic Time Warping method.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Recent studies showed that Parkinson's disease (PD) patients improved their gait parameters while walking with rhythmic auditory stimulation (RAS). They achieved a longer stride length, a reduced stride time variability and a higher walking speed. Combining RAS with mobile gait analysis would allow continuous monitoring of RAS effects and gait in natural environments.
View Article and Find Full Text PDFHereditary spastic paraplegias (HSP) represents a group of orphan neurodegenerative diseases with gait disturbance as the predominant clinical feature. Due to its rarity, research within this field is still limited. Aside from clinical analysis using established scales, gait analysis has been employed to enhance the understanding of the mechanisms behind the disease.
View Article and Find Full Text PDFActivity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
Gait analysis provides a quantitative method to assess disease progression or intervention effect on gait disorders. While mobile gait analysis enables continuous monitoring in free living conditions, state of the art gait analysis for diseases such as hereditary spastic paraplegia (HSP) is currently limited to motion capture systems which are large and expensive. The challenge with HSP is its heterogeneous nature and rarity, leading to a wide range of ages, severity and gait patterns as well as small patient numbers.
View Article and Find Full Text PDFSeverely damaged historical documents are extremely fragile. In many cases, their secrets remain concealed beneath their cover. Recently, non-invasive digitization approaches based on 3-D scanning have demonstrated the ability to recover single pages or letters without the need to open the manuscripts.
View Article and Find Full Text PDFRobust gait segmentation is the basis for mobile gait analysis. A range of methods have been applied and evaluated for gait segmentation of healthy and pathological gait bouts. However, a unified evaluation of gait segmentation methods in Parkinson's disease (PD) is missing.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Gait analysis is an important tool for diagnosis, monitoring and treatment of neurological diseases. Among these are hereditary spastic paraplegias (HSPs) whose main characteristic is heterogeneous gait disturbance. So far HSP gait has been analysed in a limited number of studies, and within a laboratory set up only.
View Article and Find Full Text PDFCyclic signals are an intrinsic part of daily life, such as human motion and heart activity. The detailed analysis of them is important for clinical applications such as pathological gait analysis and for sports applications such as performance analysis. Labeled training data for algorithms that analyze these cyclic data come at a high annotation cost due to only limited annotations available under laboratory conditions or requiring manual segmentation of the data under less restricted conditions.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
August 2017
Ultrasound-driven microbubble (MB) activity is used in therapeutic applications such as blood clot dissolution and targeted drug delivery. The safety and performance of these technologies are linked to the type and distribution of MB activities produced within the targeted area, but controlling and monitoring these activities in vivo and in real time has proven to be difficult. As therapeutic pulses are often milliseconds long, MB monitoring currently requires a separate transducer used in a passive reception mode.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models.
View Article and Find Full Text PDFHigh grade gliomas (HGGs) are characterized by resistance to radiotherapy and chemotherapy. Targeting Rad51-dependent homologous recombination repair may be an effective target for chemo- and radiosensitization. In this study we assessed the role of Rad51-dependent repair on sensitivity to radiation and temozolomide (TMZ) as single agents or in combination.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
December 2009
Purpose: Despite aggressive therapy comprising radical radiation and temozolomide (TMZ) chemotherapy, the prognosis for patients with glioblastoma multiforme (GBM) remains poor, particularly if tumors express O(6)-methylguanine-DNA-methyltransferase (MGMT). The interactions between radiation and TMZ remain unclear and have important implications for scheduling and for developing strategies to improve outcomes.
Methods And Materials: Factors determining the effects of combination therapy on clonogenic survival, cell-cycle checkpoint signaling and DNA repair were investigated in four human glioma cell lines (T98G, U373-MG, UVW, U87-MG).
We examined DNA damage responses and repair in four human glioma cell lines (A7, U87, T98G, and U373) and normal human astrocytes (NHAs) after clinically relevant radiation doses to establish whether we could identify differences among them that might suggest new approaches to selective radiosensitization. We used phosphorylation of histone H2AX visualized by immunocytochemistry to assess DNA double-strand break (DSB) formation and resolution. Fluorescence immunocytochemistry was used to visualize and quantify repair foci.
View Article and Find Full Text PDFThis prospective study investigated the clinical significance of cell kinetics, measured using bromodeoxyuridine injection and flow cytometry, in primary and metastatic cutaneous malignant melanoma. The findings illustrate that melanoma is a relatively slowly proliferating tumour, with a median potential doubling time (T(pot)) of 8.6 days.
View Article and Find Full Text PDF