In the aging population, choroidal vessels grow through the Bruch's membrane, resulting in a loss of central vision due to choroidal neovascularization (CNV). During active neovascularization, CNV is associated with inappropriate levels of apoptosis in multiple cell types, including choroidal endothelial cells (ChECs). Bim is a pro-apoptotic member of the Bcl-2 family.
View Article and Find Full Text PDFApoptosis plays prominent roles during organ development, maturation and homeostasis. In the retina, Bcl-2 family members function through the intrinsic cell death pathway with vital roles during vascular development and hyperoxia-mediated vessel obliteration during oxygen induced ischemic retinopathy (OIR). Bim, a BH3 only protein Bcl-2 family member, binds and activates Bax and/or Bak to facilitate apoptosis.
View Article and Find Full Text PDFFront Ophthalmol (Lausanne)
January 2024
Age-related macular degeneration (AMD) is a vision threatening disease in older adults. Anti-VEGF treatment is effective for the majority of neovascular AMD (nAMD) patients, although approximately 30% of nAMD patients have an incomplete response for unknown reasons. Here we assessed the contribution of single nucleotide polymorphisms (SNPs) in key angioinflammatory regulatory genes in nAMD patients with an incomplete response compared to those responsive to anti-VEGF treatment.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) remains a leading cause of vision loss in elderly patients. Its etiology and progression are, however, deeply intertwined with various cellular and molecular interactions within the retina and choroid. Among the key cellular players least studied are choroidal mast cells, with important roles in immune and allergic responses.
View Article and Find Full Text PDFAngiogenesis, although required during eye development, has a causative effect in many ocular diseases. Aberrant neovascularization contributes to the progression of neovascular age-related macular degeneration (nAMD), a vision-threaten disease in aging Americans. Since increased amounts of vascular endothelial growth factor (VEGF) drives neovascularization during the pathogenesis of nAMD the standard of care are anti-VEGF therapies attempt to disrupt this vicious cycle.
View Article and Find Full Text PDFAims/hypothesis: The loss of pericytes surrounding the retinal vasculature in early diabetic retinopathy underlies changes to the neurovascular unit that lead to more destructive forms of the disease. However, it is unclear which changes lead to loss of retinal pericytes. This study investigated the hypothesis that chronic increases in one or more inflammatory factors mitigate the signalling pathways needed for pericyte survival.
View Article and Find Full Text PDFAngiogenesis is vital to developmental, regenerative and repair processes. It is normally regulated by a balanced production of pro- and anti-angiogenic factors. Alterations in this balance under pathological conditions are generally mediated through up-regulation of pro-angiogenic and/or downregulation of anti-angiogenic factors, leading to growth of new and abnormal blood vessels.
View Article and Find Full Text PDFPurpose: Adenosine signaling modulates ocular inflammatory processes, and its antagonism mitigates neovascularization in both newborns and preclinical models of ocular neovascularization including age-related macular degeneration (AMD). The adenosine receptor expression patterns have not been well characterized in the human retina and choroid.
Methods: Here we examined the expression of adenosine receptor subtypes within the retina and choroid of human donor eyes with and without AMD.
Cytochrome P450 (CYP) 1B1 is a heme-containing monooxygenase found mainly in extrahepatic tissues, including the retina. CYP1B1 substrates include exogenous aromatic hydrocarbons, such as dioxins, and endogenous bioactive compounds, including 17β-estradiol (E2) and arachidonic acid. The endogenous compounds and their metabolites are mediators of various cellular and physiological processes, suggesting that CYP1B1 activity is likely important in maintaining proper cellular and tissue functions.
View Article and Find Full Text PDFThe integrity of retinal endothelial cell (EC) is essential for establishing and maintaining the retinal blood barrier to ensure proper vision. Vitamin D is a hormone with known protective roles in EC function. The majority of vitamin D action is mediated through the vitamin D receptor (VDR).
View Article and Find Full Text PDFThe visualization of choroidal vasculature and innate immune cells in the eyes of pigmented mice has been challenging due to the presence of a retinal pigment epithelium (RPE) layer separating the choroid and retina. Here, we established methods for visualizing the choroidal macrophages, mast cells, and vasculature in eyes of albino and pigmented mice using cell type-specific staining. We were able to visualize the choroidal arterial and venous systems.
View Article and Find Full Text PDFBranching morphogenesis is a key developmental process during organogenesis, such that its disruption frequently leads to long-term consequences. The kidney and eye share many etiologies, perhaps, due to similar use of developmental branching morphogenesis and signaling pathways including cell death. Tipping the apoptotic balance towards apoptosis imparts a ureteric bud and retinal vascular branching phenotype similar to one that occurs in papillorenal syndrome.
View Article and Find Full Text PDFNeovascular or wet age-related macular degeneration (nAMD) causes vision loss due to inflammatory and vascular endothelial growth factor (VEGF)-driven neovascularization processes in the choroid. Due to the excess in VEGF levels associated with nAMD, anti-VEGF therapies are utilized for treatment. Unfortunately, not all patients have a sufficient response to such therapies, leaving few if any other treatment options for these patients.
View Article and Find Full Text PDFInflammation is increasingly recognized as an important modulator in the pathogenesis of neovascular age-related macular degeneration (nAMD). Although significant progress has been made in delineating the pathways that contribute to the recruitment of inflammatory cells and their contribution to nAMD, we know little about what drives the resolution of these inflammatory responses. Gaining a better understanding of how immune cells are cleared in the choroid will give a novel insight into how sustained inflammation could influence the pathogenesis of nAMD.
View Article and Find Full Text PDFRetinopathy of prematurity (ROP) is one of the main causes of blindness in children worldwide. Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), play critical protective roles in the development and function of neurons and vasculature. Lack of BDNF expression results in increased endothelial cell apoptosis and reduced endothelial cell-cell contact.
View Article and Find Full Text PDFAdenosine receptors (AR) are widely expressed in a variety of tissues including the retina and brain. They are involved in adenosine-mediated immune responses underlying the onset and progression of neurodegenerative diseases. The expression of AR has been previously demonstrated in some retinal cells including endothelial cells and retinal pigment epithelial cells, but their expression in the choroid and choroidal cells remains unknown.
View Article and Find Full Text PDFIschemic stroke is a major cause of long-term disabilities, including vision loss. Neuronal and blood vessel maturation can affect the susceptibility of and outcome after ischemic stroke. Although we recently reported that exposure of neonatal mice to hypoxia-ischemia (HI) severely compromises the integrity of the retinal neurovasculature, it is not known whether juvenile mice are similarly impacted.
View Article and Find Full Text PDFTight regulation of positive and negative regulators of angiogenesis is essential, particularly in the eye where their dysregulation can lead to vision loss. Thrombospondin-1 (TSP1) is a matricellular protein that negatively regulates angiogenesis and inflammation in the eye. It aids ocular vascular homeostasis such that its loss contributes to increased retinal vascular density and pathologic ocular neovascularization.
View Article and Find Full Text PDFDiabetes associated complications, including diabetic retinopathy and loss of vision, are major health concerns. Detecting early retinal vascular changes during diabetes is not well documented, and only few studies have addressed this domain. The purpose of this study was to noninvasively evaluate temporal changes in retinal vasculature at very early stages of diabetes using fundus images from preclinical models of diabetes.
View Article and Find Full Text PDFObjective: Abdominal aortic aneurysm is characterized by the progressive loss of aortic integrity and accumulation of inflammatory cells primarily macrophages. We previously reported that global deletion of matricellular protein TSP1 (thrombospondin-1) protects mice from aneurysm formation. The objective of the current study is to investigate the cellular and molecular mechanisms underlying TSP1's action in aneurysm.
View Article and Find Full Text PDFApoptosis of neurovascular cells, including astroglial cells, contributes to the pathogenesis of diseases in which neurovascular disruption plays a central role. Bim is a pro-apoptotic protein that modulates not only apoptosis but also various cellular functions such as migration and extracellular matrix protein expression. Astroglial cells act as an intermediary between neural and vascular cells facilitating retinal vascular development and remodeling while maintaining normal vascular function and neuronal integrity.
View Article and Find Full Text PDFAstrocytes (AC) are the most abundant cells in the central nervous system. In the retina, astrocytes play important roles in the development and integrity of the retinal neurovasculature. Astrocytes dysfunction contributes to pathogenesis of a variety of neurovascular diseases including diabetic retinopathy.
View Article and Find Full Text PDFHuman-induced pluripotent stem cells (iPSCs) represent a promising cell source for the construction of organotypic culture models for chemical toxicity screening and characterization. To characterize the effects of chemical exposure on the human neurovasculature, we constructed neurovascular unit (NVU) models consisting of endothelial cells (ECs) and astrocytes (ACs) derived from human-iPSCs, as well as human brain-derived pericytes (PCs). The cells were cocultured on synthetic poly(ethylene glycol) (PEG) hydrogels that guided the self-assembly of capillary-like vascular networks.
View Article and Find Full Text PDF