Publications by authors named "Christine M Papadakis"

Poly(-isopropylacrylamide) (PNIPAM) in aqueous solution forms mesoglobules above its cloud point temperature . While these are small and compact at atmospheric pressure, they are large and water-rich at high pressure. To identify the transition between these states, we employed optical microscopy and carried out isothermal pressure scans.

View Article and Find Full Text PDF

We investigate the collective dynamics of thermoresponsive polymer poly(-isopropylmethacrylamide) (PNIPMAM) in aqueous solution and in water/methanol mixtures in the one-phase region. In neat water, the polymer concentration is varied in a wide range around the overlap concentration *, that is estimated at 23 g L. Using dynamic light scattering (DLS), two decays ("modes") are consistently observed in the intensity autocorrelation functions for = 2-150 g L with relaxation rates which are proportional to the square of the momentum transfer.

View Article and Find Full Text PDF

We present the development of a platform of well-defined, dynamic covalent amphiphilic polymer conetworks (APCN) based on an α,ω-dibenzaldehyde end-functionalized linear amphiphilic poly(ethylene glycol)--poly(propylene glycol)--poly(ethylene glycol) (PEG--PPG--PEG, Pluronic) copolymer end-linked with a triacylhydrazide oligo(ethylene glycol) triarmed star cross-linker. The developed APCNs were characterized in terms of their rheological (increase in the storage modulus by a factor of 2 with increase in temperature from 10 to 50 °C), self-healing, self-assembling, and mechanical properties and evaluated as a matrix for gel polymer electrolytes (GPEs) in both the stretched and unstretched states. Our results show that water-loaded APCNs almost completely self-mend, self-organize at room temperature into a body-centered cubic structure with long-range order exhibiting an aggregation number of around 80, and display an exceptional room temperature stretchability of ∼2400%.

View Article and Find Full Text PDF

Polydiacetylenes (PDAs), conjugated and stimuli-responsive polymers, are of interest for colorimetric sensing technologies. Commercially available PDAs with carboxylic headgroup do not show any colorimetric response to acid. To achieve acid-responsive property, the headgroups of PDAs are often modified with some functional moieties, involving complicated synthetic processes.

View Article and Find Full Text PDF

Dual thermo- and light-responsive water-soluble copolymers that respond to exclusively non-invasive triggers are obtained by functionalising poly(,-dimethylacrylamide) with arylazopyrazole side chains. The light-induced - (-) photo isomerisation of these dyes provides an exceptionally effective photo-switch, which can reversibly shift the LCST-type phase transition temperatures by almost 25 K.

View Article and Find Full Text PDF

Pressure is a key variable in the phase behavior of responsive polymers, both for applications and from a fundamental point of view. In this feature article, we review recent developments, particularly applications of neutron techniques such as small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), across the temperature-pressure phase diagram. These are complemented by kinetic SANS experiments following pressure jumps.

View Article and Find Full Text PDF

Grazing-incidence small-angle X-ray scattering (GISAXS) is a widely used method for the characterization of the nanostructure of supported thin films and enables time-resolved measurements. The 2D scattering patterns contain detailed information about the nanostructures within the film and at its surface. However, this information is distorted not only by the reflection of the X-ray beam at the substrate-film interface and its refraction at the film surface but also by scattering of the substrate, the sample holder and other types of parasitic background scattering.

View Article and Find Full Text PDF

The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied via spectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (HO or DO), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (HO or DO/acetone-d6 = 9:1 v/v).

View Article and Find Full Text PDF

Nanoparticles (NPs) based on the proteolytic enzyme trypsin (TRY) were prepared by a biocompatible methodology. TRY co-assembled with the anionic polysaccharide chondroitin sulfate (CS) in complexes with well-defined distributions of radii in the range of 100-200 nm by electrostatic complexation at acidic conditions. At pH 7 the complexes were unstable and lost their monomodal size distribution which is potentially related to TRY's weak positive net surface charge and a large negative charge patch that forms at neutral pH.

View Article and Find Full Text PDF

Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent.

View Article and Find Full Text PDF

The structures of a molecular brush in a good solvent are investigated using synchrotron small-angle X-ray scattering in a wide range of concentrations. The brush under study, PPOx--PPrOx, features a relatively long poly(2-isopropenyl-2-oxazoline) (PPOx) backbone and short poly(2--propyl-2-oxazoline) (PPrOx) side chains. As a solvent, ethanol is used.

View Article and Find Full Text PDF

Mesoporous hematite (α-FeO) thin films with high surface-to-volume ratios show great potential as photoelectrodes or electrochemical electrodes in energy conversion and storage. In the present work, with the assistance of an up-scalable slot-die coating technique, locally highly ordered α-FeO thin films are successfully printed based on the amphiphilic diblock copolymer poly(styrene--4-vinylpyridine) (PS--P4VP) as a structure-directing agent. Pure PS--P4VP films are printed under the same conditions for comparison.

View Article and Find Full Text PDF

We investigate active droplets that form at the expense of a chemical fuel in aqueous buffer and vanish autonomously. Dynamic light scattering reveals the scattered intensity, the hydrodynamic radius, and the width of the size distribution with high precision as well as high temporal and spatial resolutions. Comparing the resulting time-dependent behavior of the droplet characteristics with the time-dependent concentration of the anhydrides, the roles of the chemical reaction cycle and of colloidal growth processes are elucidated.

View Article and Find Full Text PDF

Identification and control of the disintegration mechanism of polymer nanoparticles are essential for applications in transport and release including polymer delivery systems. Structural changes during the disintegration of poly(N-isopropylacrylamide) (PNIPAM) mesoglobules in aqueous solution are studied in situ and in real time using kinetic small-angle neutron scattering with a time resolution of 50 ms. Simultaneously length scales between 1 and 100 nm are resolved.

View Article and Find Full Text PDF

The water vapor-induced swelling, as well as subsequent phase-transition kinetics, of thin films of a diblock copolymer (DBC) loaded with different amounts of the salt NaBr, is investigated in situ. In dilute aqueous solution, the DBC features an orthogonally thermoresponsive behavior. It consists of a zwitterionic poly(sulfobetaine) block, namely, poly(4-(-(3'-methacrylamidopropyl)-,-dimethylammonio) butane-1-sulfonate) (PSBP), showing an upper critical solution temperature, and a nonionic block, namely, poly(-isopropylmethacrylamide) (PNIPMAM), exhibiting a lower critical solution temperature.

View Article and Find Full Text PDF

The polymer dynamics in concentrated solutions of poly(N-isopropyl acrylamide) (PNIPAM) in D2O/CD3OD mixtures is investigated in the one-phase region. Two polymer concentrations (9 and 25 wt%) and CD3OD contents in the solvent mixture of 0, 10 and 15 vol% are chosen. Temperature-resolved dynamic light scattering (DLS) reveals the collective dynamics.

View Article and Find Full Text PDF

Diblock copolymer thin films of polystyrene-block-poly(dimethyl siloxane) (PS-b-PDMS) featuring PDMS cylinders in a PS matrix are investigated during solvent vapor annealing with mixtures of n-heptane (which is strongly selective for PDMS) and toluene (which is close to nonselective for both blocks). Swelling in the vapor of one of the pure solvents and exchanging it stepwise by the vapor of the other solvent is compared to swelling in a given binary solvent vapor mixture for a prolonged time. The resulting structural changes, such as ordering of the cylinders on a hexagonal lattice and their transition into lamellae, are followed using in situ, real-time grazing-incidence small-angle X-ray scattering (GISAXS).

View Article and Find Full Text PDF

The binding of plasma proteins to a drug carrier alters the circulation of nanoparticles (NPs) in the bloodstream, and, as a consequence, the anticancer efficiency of the entire nanoparticle drug delivery system. We investigate the possible interaction and the interaction mechanism of a polymeric drug delivery system based on -(2-hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) with the most abundant proteins in human blood plasma-namely, human serum albumin (HSA), immunoglobulin G (IgG), fibrinogen (Fbg), and apolipoprotein (Apo) E4 and A1-using a combination of small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), and nuclear magnetic resonance (NMR). Through rigorous investigation, we present evidence of weak interactions between proteins and polymeric nanomedicine.

View Article and Find Full Text PDF

This feature article reviews our recent advancements on the synthesis, phase behavior, and micellar structures of diblock copolymers consisting of oppositely thermoresponsive blocks in aqueous environments. These copolymers combine a nonionic block, which shows lower critical solution temperature (LCST) behavior, with a zwitterionic block that exhibits an upper critical solution temperature (UCST). The transition temperature of the latter class of polymers is strongly controlled by its molar mass and by the salt concentration, in contrast to the rather invariant transition of nonionic polymers with type II LCST behavior such as poly(-isopropylacrylamide) or poly(-isopropyl methacrylamide).

View Article and Find Full Text PDF

Despite increasing interests in non-lamellar liquid crystalline dispersions, such as hexosomes, for drug delivery, little is known about their interactions with cells and mechanism of cell entry. Here we examine the cellular uptake of hexosomes based on phytantriol and mannide monooleate by HeLa cells using live cell microscopy in comparison to conventional liposomes. To investigate the importance of specific endocytosis pathways upon particle internalization, we silenced regulatory proteins of major endocytosis pathways using short interfering RNA.

View Article and Find Full Text PDF

Thermoresponsive films of poly( N-isopropyl methacrylamide) (PNIPMAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA) are compared with respect to their hydration and dehydration kinetics using in situ neutron reflectivity. Both as-prepared films present a homogeneous single-layer structure and have similar transition temperatures of the lower critical solution temperature type (TT, PNIPMAM 38 °C and PMDEGA 41 °C). After hydration in unsaturated DO vapor at 23 °C, a DO enrichment layer is observed in PNIPMAM films adjacent to the Si substrate.

View Article and Find Full Text PDF

Smart, fully orthogonal switching was realized in a highly biocompatible diblock copolymer system with variable trigger-induced aqueous self-assembly. The polymers are composed of nonionic and zwitterionic blocks featuring lower and upper critical solution temperatures (LCSTs and UCSTs). In the system investigated, diblock copolymers from poly( N-isopropyl methacrylamide) (PNIPMAM) and a poly(sulfobetaine methacrylamide), systematic variation of the molar mass of the latter block allowed for shifting the UCST of the latter above the LCST of the PNIPMAM block in a salt-free condition.

View Article and Find Full Text PDF

The phase transition from swollen chains to polymer mesoglobules of an aqueous solution of poly(-isopropylacrylamide) is investigated with kinetic small-angle neutron scattering with 50 ms time resolution in conjunction with millisecond pressure jumps across the coexistence line. The time-resolved study evidenced three distinct regimes: fractal clusters form during the first second and transform into compact mesoglobules. During the following ∼20 s, these grow by diffusion-limited coalescence.

View Article and Find Full Text PDF

The effect of chain architecture on the swelling and thermal response of thin films obtained from an amphiphilic three-arm star-shaped thermo-responsive block copolymer poly(methoxy diethylene glycol acrylate)-block-polystyrene ((PMDEGA-b-PS)) is investigated by in situ neutron reflectivity (NR) measurements. The PMDEGA and PS blocks are micro-phase separated with randomly distributed PS nanodomains. The (PMDEGA-b-PS) films show a transition temperature (TT) at 33 °C in white light interferometry.

View Article and Find Full Text PDF

Nanocarriers based on inverse hexagonal liquid crystalline phases (hexosomes) show promising potential as vaccine delivery systems. Their unique internal structure, composed of both lipophilic domains and water-containing channels, renders them capable of accommodating immunopotentiating compounds and antigens. However, their adjuvant properties are poorly understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvhbvct1sclq07hmhq8s0lc7np30rd3vd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once