Publications by authors named "Christine M O'Brien"

The orientation and function of smooth muscle in the cervix may contribute to the important biomechanical properties that change during pregnancy. Thus, this study examined the three-dimensional structure, smooth muscle phenotype, and mechanical and contractile functions of the upper and lower cervix of nongravid (not pregnant) and gravid (pregnant) mice. In gravid cervix, we uncovered region-specific changes in the structure and organization of fiber tracts.

View Article and Find Full Text PDF

Disparities in surgical outcomes often result from subjective decisions dictated by surgical training, experience, and available resources. To improve outcomes, surgeons have adopted advancements in robotics, endoscopy, and intra-operative imaging including fluorescence-guided surgery (FGS), which highlights tumors and anatomy in real-time. However, technical, economic, and logistic challenges hinder widespread adoption of FGS beyond high-resource centers.

View Article and Find Full Text PDF

Postpartum hemorrhage (PPH) is the leading and most preventable cause of maternal mortality, particularly in low-resource settings. PPH is currently diagnosed through visual estimation of blood loss or monitoring of vital signs. Visual assessment routinely underestimates blood loss beyond the point of pharmaceutical intervention.

View Article and Find Full Text PDF

Disparities in surgical outcomes often result from subjective than objective decisions dictated by surgical training, experience, and available resources. To improve outcomes, surgeons have adopted advancements in robotics, endoscopy, and intra-operative imaging including fluorescence-guided surgery (FGS), which highlight tumors in real-time without using ionizing radiation. However, like many medical innovations, technical, economic, and logistic challenges have hindered widespread adoption of FGS beyond high-resource centers.

View Article and Find Full Text PDF

Postpartum hemorrhage (PPH) is both the leading and most preventable cause of maternal mortality. PPH is currently diagnosed through visual estimation of blood loss or vital sign analysis of shock index (ratio of heart rate to systolic blood pressure). Visual assessment underestimates blood loss, particularly in the setting of internal bleeding, and compensatory mechanisms stabilize hemodynamics until hemorrhage is massive, beyond the point of pharmaceutical intervention.

View Article and Find Full Text PDF

Quantifying solid tumor margins with fluorescence-guided surgery approaches is a challenge, particularly when using near infrared (NIR) wavelengths due to increased penetration depths. An NIR dual wavelength excitation fluorescence (DWEF) approach was developed that capitalizes on the wavelength-dependent attenuation of light in tissue to determine fluorophore depth. A portable dual wavelength excitation fluorescence imaging system was built and tested in parallel with an NIR tumor-targeting fluorophore in tissue mimicking phantoms, chicken tissue, and in vivo mouse models of breast cancer.

View Article and Find Full Text PDF

Background: Biochemical cervical change during labor is not well understood, in part, because of a dearth of technologies capable of safely probing the pregnant cervix in vivo. The need for such a technology is 2-fold: (1) to gain a mechanistic understanding of the cervical ripening and dilation process and (2) to provide an objective method for evaluating the cervical state to guide clinical decision-making. Raman spectroscopy demonstrates the potential to meet this need, as it is a noninvasive optical technique that can sensitively detect alterations in tissue components, such as extracellular matrix proteins, lipids, nucleic acids, and blood, which have been previously established to change during the cervical remodeling process.

View Article and Find Full Text PDF

Raman spectroscopy has been utilized for the non-invasive, non-destructive assessment of tissue pathophysiology for a variety of applications largely through the use of fiber optic probes to interface with samples of interest. Fiber optic probes can be designed to optimize the collection of Raman-scattered photons from application-dependent depths, and this critical consideration should be addressed when planning a study. Herein we investigate four distinct probe geometries for sensitivity to superficial and deep signals through a Monte Carlo model that incorporates Raman scattering and fluorescence.

View Article and Find Full Text PDF

Evolution from static to dynamic label-free thermal imaging has improved bulk tissue characterization, but fails to capture subtle thermal properties in heterogeneous systems. Here, we report a label-free, high speed, and high-resolution platform technology, focal dynamic thermal imaging (FDTI), for delineating material patterns and tissue heterogeneity. Stimulation of focal regions of thermally responsive systems with a narrow beam, low power, and low cost 405 nm laser perturbs the thermal equilibrium.

View Article and Find Full Text PDF

Gone are the days when medical imaging was used primarily to visualize anatomic structures. The emergence of molecular imaging (MI), championed by radiolabeled F-FDG PET, has expanded the information content derived from imaging to include pathophysiologic and molecular processes. Cancer imaging, in particular, has leveraged advances in MI agents and technology to improve the accuracy of tumor detection, interrogate tumor heterogeneity, monitor treatment response, focus surgical resection, and enable image-guided biopsy.

View Article and Find Full Text PDF

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a major cause of chorioamnionitis and neonatal sepsis. This study evaluates Raman spectroscopy (RS) to identify spectral characteristics of infection and differentiate GBS from Escherichia coli and Staphylococcus aureus during ex vivo infection of human fetal membrane tissues. Unique spectral features were identified from colonies grown on agar and infected fetal membrane tissues.

View Article and Find Full Text PDF

A fiber optic probe-based Raman spectroscopy system using a single laser module with two excitation wavelengths, at 680 and 785 nm, has been developed for measuring the fingerprint and high wavenumber regions using a single detector. This system is simpler and less expensive than previously reported configurations of combined fingerprint and high wavenumber Raman systems, and its probe-based implementation facilitates numerous in vivo applications. The high wavenumber region of the Raman spectrum ranges from 2800-3800 cm-1 and contains valuable information corresponding to the molecular vibrations of proteins, lipids, and water, which is complimentary to the biochemical signatures found in the fingerprint region (800-1800 cm-1), which probes DNA, lipids, and proteins.

View Article and Find Full Text PDF

The inherent antioxidant function of poly(propylene sulfide) (PPS) microspheres (MS) was dissected for different reactive oxygen species (ROS), and therapeutic benefits of PPS-MS were explored in models of diabetic peripheral arterial disease (PAD) and mechanically induced post-traumatic osteoarthritis (PTOA). PPS-MS (∼1 m diameter) significantly scavenged hydrogen peroxide (HO), hypochlorite, and peroxynitrite but not superoxide in vitro in cell-free and cell-based assays. Elevated ROS levels (specifically HO) were confirmed in both a mouse model of diabetic PAD and in a mouse model of PTOA, with greater than 5- and 2-fold increases in HO, respectively.

View Article and Find Full Text PDF

Preterm birth (PTB) is the leading cause of neonatal death, however, accurate prediction methods do not exist. Detection of early changes in the cervix, an organ that biochemically remodels to deliver the fetus, has potential to predict PTB risk. Researchers have employed light-based methods to monitor biochemical changes in the cervix during pregnancy, however, these approaches required patients to undergo a speculum examination which many patients find uncomfortable and is not standard practice during prenatal care.

View Article and Find Full Text PDF

In this work, we demonstrate the targeted diagnosis of immunomarker programmed death ligand 1 (PD-L1) and simultaneous detection of epidermal growth factor receptor (EGFR) in breast cancer tumors in vivo using gold nanostars (AuNS) with multiplexed surface enhanced Raman spectroscopy (SERS). Real-time longitudinal tracking with SERS demonstrated maximum accumulation of AuNS occurred 6 h post intravenous (IV) delivery, enabling detection of both biomarkers simultaneously. Raman signal correlating to both PD-L1 and EGFR decreased by ∼30% in control tumors where receptors were pre-blocked prior to AuNS delivery, indicating both the sensitivity and specificity of SERS in distinguishing tumors with different levels of PD-L1 and EGFR expression.

View Article and Find Full Text PDF

In mouse models used to study parturition or pre-clinical therapeutic testing, measurement of uterine contractions is limited to either isometric tension or operative intrauterine pressure (IUP). The goal of this study was to: (1) develop a method for transcervical insertion of a pressure catheter to measure intrauterine contractile pressure during mouse pregnancy, (2) determine whether this method can be utilized numerous times in a single mouse pregnancy without affecting the timing of delivery or fetal outcome and (3) compare the contractile activity between mouse models of term and preterm labor (PTL). Visualization of the cervix allowed intrauterine pressure catheter (IUPC) placement into anesthetized pregnant mice (plug = day 1, delivery = day 19.

View Article and Find Full Text PDF

Background: The cervix must undergo significant biochemical remodeling to allow for successful parturition. This process is not fully understood, especially in instances of spontaneous preterm birth. In vivo Raman spectroscopy is an optical technique that can be used to investigate the biochemical composition of tissue longitudinally and noninvasively in human beings, and has been utilized to measure physiology and disease states in a variety of medical applications.

View Article and Find Full Text PDF

Monitoring cervical structure and composition during pregnancy has high potential for prediction of preterm birth (PTB), a problem affecting 15 million newborns annually. We use in vivo Raman spectroscopy, a label-free, light-based method that provides a molecular fingerprint to non-invasively investigate normal and impaired cervical remodeling. Prostaglandins stimulate uterine contractions and are clinically used for cervical ripening during pregnancy.

View Article and Find Full Text PDF

Unlabelled: The molecular changes that occur with cervical remodelling during pregnancy are not completely understood. This study reviews Raman spectroscopy, an optical technique for detecting changes in the pregnant cervix, and reports preliminary studies on cervical remodelling in mice that suggest that the technique provides advantages over other methods.

Conclusion: Raman spectroscopy is sensitive to biochemical changes in the pregnant cervix and has high potential as a tool for detecting premature cervical remodelling in pregnant women.

View Article and Find Full Text PDF

Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are unable to detect early onset of metastatic disease. Patients must wait until macroscopic secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and travel through the blood or lymph system can provide data for diagnosing and monitoring metastatic disease.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are those cells that have separated from a macroscopic tumor and spread through the blood and lymph systems to seed secondary tumors(1,2,3). CTCs are indicators of metastatic disease and their detection in blood samples may be used to diagnose cancer and monitor a patient's response to therapy. Since CTCs are rare, comprising about one tumor cell among billions of normal blood cells in advanced cancer patients, their detection and enumeration is a difficult task.

View Article and Find Full Text PDF