Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway for protein degradation.
View Article and Find Full Text PDFAlexander disease (AxD) is a rare neurodegenerative disorder characterized pathologically by the presence of eosinophilic inclusions known as Rosenthal fibers (RFs) within astrocytes, and is caused by dominant mutations in the coding region of the gene encoding glial fibrillary acidic protein (GFAP). GFAP is the major astrocytic intermediate filament, and in AxD patient brain tissue GFAP is a major component of RFs. TAR DNA binding protein of 43 kDa (TDP-43) is the major pathological protein in almost all cases of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and ∼50% of frontotemporal lobar degeneration (FTLD), designated as FTLD-TDP.
View Article and Find Full Text PDFAlexander disease is a fatal neurodegenerative disease caused by dominant mutations in glial fibrillary acidic protein (GFAP). The disease is characterized by protein inclusions called Rosenthal fibers within astrocyte cell bodies and processes, and an antioxidant response mediated by the transcription factor Nrf2. We sought to test whether further elevation of Nrf2 would be beneficial in a mouse model of Alexander disease.
View Article and Find Full Text PDFAlexander disease is a rare and generally fatal disorder of the CNS, originally classified among the leukodystrophies because of the prominent myelin deficits found in young patients. The most common form of this disease affects infants, who often have profound mental retardation and a variety of developmental delays, but later onset forms also occur, sometimes with little or no white matter pathology at all. The pathological hallmark of Alexander disease is the inclusion body, known as Rosenthal fiber, within the cell bodies and processes of astrocytes.
View Article and Find Full Text PDFLentiviral vectors transduce both dividing and non-dividing cells and can support sustained expression of transgenes. These properties make them attractive for the transduction of neurons and other neural cell types in vitro and in vivo. Lentiviral vectors can be targeted to specific cell types by using different promoters in the lentiviral shuttle vector.
View Article and Find Full Text PDFFunctional reorganization of brain cortical areas occurs following stroke in humans, and many instances of this plasticity are associated with recovery of function. Rodent studies have shown that following a cortical stroke, neurons in uninjured areas of the brain are capable of sprouting new axons into areas previously innervated by injured cortex. The pattern and extent of structural plasticity depend on the species, experimental model, and lesion localization.
View Article and Find Full Text PDF