Green-leaved Perilla frutescens extracts were investigated on their effect on cell proliferation of the porcine jejunal epithelial cell line, IPEC-J2, as well as on the gene expression of cell cycle or cancer-related genes. Some extracted compounds were, however, susceptible to degradation in cell culture medium, whereas others were found to be stable during the entire experimental time. Control experiments also included the assessment of H O generation in cell culture medium caused by oxidation of natural extract compounds, which was proved to be absent at low extract concentrations.
View Article and Find Full Text PDFEnzyme-regulatory effects of compounds contained in complex mixtures can be unveiled by coupling a continuous-flow enzyme assay to a chromatographic separation. A temperature-elevated separation was developed and the performance was tested using Perilla frutescens plant extracts of various polarity (water, methanol, ethanol/water). Owning to the need of maintaining sufficient enzymatic activity, only low organic solvent concentrations can be added to the mobile phase.
View Article and Find Full Text PDFThis article reviews monitoring strategies for enzymatic assays coupled with mass spectrometric detection. This coupling has already been shown to be helpful in providing versatile and detailed knowledge about enzyme kinetics. Various available publications address two general approaches.
View Article and Find Full Text PDFRationale: Related with its ability to degrade nucleotides, intestinal alkaline phosphatase (iAP) is an important participant in intestinal pH regulation and inflammatory processes. However, its activity has been investigated mainly by using artificial non-nucleotide substrates to enable the utilization of conventional colorimetric methods. To capture the degradation of the physiological nucleotide substrate of the enzyme along with arising intermediates and the final product, the enzymatic assay was adapted to mass spectrometric detection.
View Article and Find Full Text PDF