Myeloid-derived suppressive cells (MDSC) have been reported to promote metastasis, but the loss of cancer-induced B cells/B regulatory cells (tBreg) can block metastasis despite MDSC expansion in cancer. Here, using multiple murine tumor models and human MDSC, we show that MDSC populations that expand in cancer have only partially primed regulatory function and limited prometastatic activity unless they are fully educated by tBregs. Cancer-induced tBregs directly activate the regulatory function of both the monocyte and granulocyte subpopulations of MDSC, relying, in part, on TgfβR1/TgfβR2 signaling.
View Article and Find Full Text PDFTumor cells are often characterized by a high and growth factor-independent proliferation rate. We have previously shown that REF cells transformed with oncogenes E1A and c-Ha-Ras do not undergo G(1)/S arrest of the cell cycle after treatment with genotoxic factors. In this work, we used sodium butyrate, a histone deacetylase inhibitor, to show that E1A + Ras transformants were able to stop proliferation and undergo G(1)/S arrest.
View Article and Find Full Text PDF