Central dopaminergic (DAergic) pathways have an important role in a wide range of functions, such as attention, motivation, and movement. Dopamine (DA) is implicated in diseases and disorders including attention deficit hyperactivity disorder, Parkinson's disease, and traumatic brain injury. Thus, DA neurotransmission and the methods to study it are of intense scientific interest.
View Article and Find Full Text PDFParkinson's disease (PD) is a debilitating condition that is caused by a relatively specific degeneration of dopaminergic (DAergic) neurons of the substantia nigra pars compacta. L-DOPA was introduced as a viable treatment option for PD over 40 years ago and still remains the most common and effective therapy for PD. Though the effects of L-DOPA to augment striatal DA production are well known, little is actually known about how L-DOPA alters the kinetics of DA neurotransmission that contribute to its beneficial and adverse effects.
View Article and Find Full Text PDFFast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake.
View Article and Find Full Text PDF