The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components.
View Article and Find Full Text PDFThe tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function.
View Article and Find Full Text PDFHaploinsufficiency of the hematopoietic transcription factor GATA2 underlies monocytopenia and mycobacterial infections; dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency; familial myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML); and Emberger syndrome (primary lymphedema with MDS). A comprehensive examination of the clinical features of GATA2 deficiency is currently lacking. We reviewed the medical records of 57 patients with GATA2 deficiency evaluated at the National Institutes of Health from January 1, 1992, to March 1, 2013, and categorized mutations as missense, null, or regulatory to identify genotype-phenotype associations.
View Article and Find Full Text PDFThe radiolabeling of the liposome surface can be a useful tool for in vivo tracking of therapeutic drug loaded liposomes. We investigated radiolabeling therapeutic drug (i.e.
View Article and Find Full Text PDFOur understanding of the pathologic cycle leading to the development of bronchiectasis is enhanced by greater understanding of the genetic influences contributing to its development. Genome-wide linkage analysis, family-based genetic linkage studies, and the testing of candidate genes have all greatly advanced our understanding of the complexity of the genetic basis of bronchiectasis. This article discusses how allelic variations, gene modifiers, HLA associations, and the interplay of developmental, host, and environmental factors all contribute in lesser and greater degrees, depending on the specific disease, toward the development of bronchiectasis in a spectrum of disease processes.
View Article and Find Full Text PDFConformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation.
View Article and Find Full Text PDFA-kinase anchoring proteins (AKAPs) coordinate cell signaling events. AKAP79 brings together different combinations of enzyme binding partners to customize the regulation of effector proteins. In neurons, muscarinic agonists mobilize an AKAP79-anchored pool of PKC that phosphorylates the KCNQ2 subunit of the M channel.
View Article and Find Full Text PDFThe life cycle of protein kinase C (PKC) is tightly controlled by mechanisms that mature the enzyme, sustain the activation-competent enzyme, and degrade the enzyme. Here we show that a conserved PXXP motif (Kannan, N., Haste, N.
View Article and Find Full Text PDFProtein kinase C (PKC) is a family of kinases that plays diverse roles in many cellular functions, notably proliferation, differentiation, and cell survival. PKC is processed by phosphorylation and regulated by cofactor binding and subcellular localization. Extensive detail is available on the molecular mechanisms that regulate the maturation, activation, and signaling of PKC.
View Article and Find Full Text PDF