Publications by authors named "Christine M Gabriele"

Article Synopsis
  • * The dataset covers 13 regions and includes data on 27,956 unique humpback whales from 2001-2021, with an impressive identification accuracy of 97-99% using advanced machine learning.
  • * This resource aims to facilitate collaborative research on humpback whales and their habitats, especially as the ocean undergoes significant ecological changes.
View Article and Find Full Text PDF

Heteroplasmy in the mitochondrial genome offers a rare opportunity to track the evolution of a newly arising maternal lineage in populations of non-model species. Here, we identified a previously unreported mitochondrial DNA haplotype while assembling an integrated database of DNA profiles and photo-identification records from humpback whales in southeastern Alaska (SEAK). The haplotype, referred to as A8, was shared by only 2 individuals, a mature female with her female calf, and differed by only a single base pair from a common haplotype in the North Pacific, referred to as A-.

View Article and Find Full Text PDF

Unlabelled: Understanding reproductive physiology in mysticetes has been slowed by the lack of repeated samples from individuals. Analysis of humpback whale baleen enables retrospective hormone analysis within individuals dating back 3-5 years before death. Using this method, we investigated differences in four steroid hormones involved in reproduction and mating during confirmed pregnant and non-pregnant periods in two female humpback whales (Megaptera novaeangliae) with known reproductive histories based on sightings and necropsy data.

View Article and Find Full Text PDF

Baleen whales are subject to a myriad of natural and anthropogenic stressors, but understanding how these stressors affect physiology is difficult. Measurement of adrenal glucocorticoid (GC) hormones involved in the vertebrate stress response (cortisol and corticosterone) in baleen could help fill this data gap. Baleen analysis is a powerful tool, allowing for a retrospective re-creation of multiple years of GC hormone concentrations at approximately a monthly resolution.

View Article and Find Full Text PDF

Understanding calving rates of wild whale populations is critically important for management and conservation. Reproduction of humpback whales () is difficult to monitor and, even with long-term sighting studies, basic physiological information such as pregnancy rates and calving intervals remain poorly understood in many populations. We hypothesized that pregnant whales have sustained elevations in baleen progesterone that temporally correlate with gestation.

View Article and Find Full Text PDF

Developing a better understanding of the stress response is critical to ensuring the health and sustainability of marine mammal populations. However, accurately measuring and interpreting a stress response in free-ranging, large cetaceans is a nascent field. Here, an enzyme immunoassay for corticosterone was validated for use in biopsy samples from male humpback whales (Megaptera novaeangliae).

View Article and Find Full Text PDF

Understanding reproductive profiles and timing of reproductive events is essential in the management and conservation of humpback whales (Megaptera novaeangliae). Yet compared to other parameters and life history traits, such as abundance, migratory trends, reproductive rates, behavior and communication, relatively little is known about variations in reproductive physiology, especially in males. Here, an enzyme immunoassay (EIA) for testosterone was validated for use in biopsy samples from male humpback whales.

View Article and Find Full Text PDF

One of the most important challenges researchers and managers confront in conservation ecology is predicting a population's response to sub-lethal stressors. Such predictions have been particularly elusive when assessing responses of large marine mammals to past anthropogenic pressures. Recently developed techniques involving baleen whale earplugs combine age estimates with cortisol measurements to assess spatial and temporal stress/stressor relationships.

View Article and Find Full Text PDF

Investigating long term trends in acoustic communication is essential for understanding the role of sound in social species. Humpback whales are an acoustically plastic species known for producing rapidly-evolving song and a suite of non-song vocalizations ("calls") containing some call types that exhibit short-term stability. By comparing the earliest known acoustic recordings of humpback whales in Southeast Alaska (from the 1970's) with recordings collected in the 1990's, 2000's, and 2010's, we investigated the long-term repertoire stability of calls on Southeast Alaskan foraging grounds.

View Article and Find Full Text PDF

Background: Humpback whales () are a widespread, vocal baleen whale best known for producing song, a complex, repetitive, geographically distinct acoustic signal sung by males, predominantly in a breeding context. Humpback whales worldwide also produce non-song vocalizations ("calls") throughout their migratory range, some of which are stable across generations.

Methods: We looked for evidence that temporally stable call types are shared by two allopatric humpback whale populations while on their northern hemisphere foraging grounds in order to test the hypothesis that some calls, in strong contrast to song, are innate within the humpback whale acoustic repertoire.

View Article and Find Full Text PDF

Humpback whales produce a wide range of low- to mid-frequency vocalizations throughout their migratory range. Non-song "calls" dominate this species' vocal repertoire while on high-latitude foraging grounds. The source levels of 426 humpback whale calls in four vocal classes were estimated using a four-element planar array deployed in Glacier Bay National Park and Preserve, Southeast Alaska.

View Article and Find Full Text PDF

Source levels of harbor seal breeding vocalizations were estimated using a three-element planar hydrophone array near the Beardslee Islands in Glacier Bay National Park and Preserve, Alaska. The average source level for these calls was 144 dB re 1 μPa at 1 m in the 40-500 Hz frequency band. Source level estimates ranged from 129 to 149 dB re 1 μPa.

View Article and Find Full Text PDF

Monitoring patterns in biodiversity and phenology have become increasingly important given accelerating levels of anthropogenic change. Long-term monitoring programs have reported earlier occurrence of spring activity, reflecting species response to climate change. Although tracking shifts in spring migration represents a valuable approach to monitoring community-level consequences of climate change, robust long-term observations are challenging and costly.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7n61e4hoqlpp145r22dnaqok7b69vs46): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once