The intramural the National Cancer Institute (NCI) and more recently the University of Texas Southwestern Medical Center with many different collaborators comprised a complex, multi-disciplinary team that collaborated to generated large, comprehensively annotated, cell-line related research resources which includes associated clinical, and molecular characterization data. This material has been shared in an anonymized fashion to accelerate progress in overcoming lung cancer, the leading cause of cancer death across the world. However, this cell line collection also includes a range of other cancers derived from patient-donated specimens that have been remarkably valuable for other types of cancer and disease research.
View Article and Find Full Text PDFA photocatalytic water-reducing system utilizing a bis-cyclometalated bipyridyl iridium(III) photosensitizer (PS) and a platinum or palladium heterogeneous catalyst was used to identify systematic property-activity correlations among a library of structural derivatives of [Ir(ppy)(2)(bpy)](+). A heterogeneous Pd catalyst proved to be more durable than its previously reported Pt-based counterpart, allowing for more reliable photosensitizer study. The deliberate steric and electronic variations of the ppy and bpy moieties resulted in a dramatic decrease of the degradation rates observed with selected photosensitizers when compared to the more substitution-labile [Ir(ppy)(2)(bpy)](+) parent compound.
View Article and Find Full Text PDFCyanogels are coordination polymers made from the reaction of a chlorometalate and a cyanometalate in aqueous solution, which undergo a sol-gel transition to form stable gels. At temperatures above 240 degrees C, the cyanide ligand acts as a reducing agent and reduces the metal centers to lower oxidation states. To understand the mechanism of the autoreduction, the thermal reduction of the Pd-Co cyanogel system formed by the reaction of PdCl4(2-) and Co(CN)6(3-) was studied in an inert atmosphere.
View Article and Find Full Text PDF