Publications by authors named "Christine Loerz"

The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) contributes to intracellular glucocorticoid action by converting inactive cortisone to its receptor-active form cortisol (11-dehydrocorticosterone and corticosterone in mice and rats). The potential role of 11β-HSD1 in the pathogenesis of the metabolic syndrome has emerged over the past three decades. However, the precise impact of 11β-HSD1 in obesity-related diseases remains uncertain.

View Article and Find Full Text PDF

Evidence in the current literature suggests that expression and activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a key regulatory enzyme in glucocorticoid metabolism, is elevated in the liver and reduced in visceral adipose tissue and skeletal muscle following caloric restriction (CR). In order to investigate the influence of CR on 11β-HSD1 in more detail, we assessed expression and activity of 11β-HSD1 in several tissues in two independent CR and re-feeding animal models. Levels and activity of 11β-HSD1 after CR and re-feeding were measured [mouse liver and pig liver, pig visceral adipose tissue and pig skeletal muscle] using semi-quantitative RT-PCR, Western Blot analysis, and HPLC.

View Article and Find Full Text PDF

The microsomal enzyme 11β-hydroxysteroid deydrogenase type 1 (11β-HSD1) catalyzes the interconversion of glucocorticoid receptor-inert cortisone to receptor- active cortisol, thereby acting as an intracellular switch for regulating the access of glucocorticoid hormones to the glucocorticoid receptor. There is strong evidence for an important aetiological role of 11β-HSD1 in various metabolic disorders including insulin resistance, diabetes type 2, hypertension, dyslipidemia and obesity. Hence, modulation of 11β-HSD1 activity with selective inhibitors is being pursued as a new therapeutic approach for the treatment of the metabolic syndrome.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the intracellular regeneration of active cortisol from inert cortisone in key metabolic tissues, thus regulating ligand access to glucocorticoid receptors. There is strong evidence that increased adipose 11β-HSD1 activity may be an important aetiological factor in the current obesity and diabetes type 2 epidemics. Hence, inhibition of 11β-HSD1 has emerged as a promising anti-diabetic strategy, a concept that is largely supported by numerous studies in rodent models as well as limited clinical data with prototype inhibitors.

View Article and Find Full Text PDF