Publications by authors named "Christine Lamont"

The objective of this study is to determine how a hibernating mammal avoids the formation of blood clots under periods of low blood flow. A microfluidic vascular injury model was performed to differentiate the effects of temperature and shear rate on platelet adhesion to collagen. Human and ground squirrel whole blood was incubated at 15 or 37 °C and then passed through a microfluidic chamber over a 250-µm strip of type I fibrillar collagen at that temperature and the shear rates of 50 or 300 s to simulate torpid and aroused conditions, respectively.

View Article and Find Full Text PDF

The sympathetic nervous system (SNS) plays an essential role in the control of total peripheral vascular resistance by controlling the contraction of small arteries. The SNS also exerts long-term trophic influences in health and disease; SNS hyperactivity accompanies most forms of human essential hypertension, obesity and heart failure. At their junctions with smooth muscle cells, the peri-arterial sympathetic nerves release ATP, noradrenaline (NA) and neuropeptide Y (NPY) onto smooth muscle cells.

View Article and Find Full Text PDF

The sympathetic nervous system plays an essential role in the control of total peripheral vascular resistance and blood flow, by controlling the contraction of small arteries. Perivascular sympathetic nerves release ATP, norepinephrine (NE) and neuropeptide Y. This review summarizes our knowledge of the intracellular Ca2+ signals that are activated by ATP and NE, acting respectively on P2X1 and alpha1-adrenoceptors in arterial smooth muscle.

View Article and Find Full Text PDF

Brief, spatially localized Ca(2+) transients occur in the smooth muscle adjacent to perivascular nerves of small arteries during neurogenic contractions. We named these "junctional Ca(2+) transients" (jCaTs) and postulated that they arose from Ca(2+) entering smooth muscle cells through P2X(1) receptors activated by neurally released ATP. Nevertheless, the lack of potent, subtype-selective P2X-receptor antagonists made determining the exact molecular identity of the channels difficult.

View Article and Find Full Text PDF

The functions of ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors [Ins(1,4,5)P(3)Rs] in adrenergically activated contractions of pressurized rat mesenteric small arteries were investigated. Caffeine (20 mM) but not phenylephrine (PE; 10 microM) facilitated the depletion of smooth muscle sarcoplasmic reticulum (SR) Ca(2+) stores by ryanodine (40 microM). In ryanodine-treated SR-depleted arteries, 1) Ca(2+) sparks were absent, 2) low concentrations of PE failed to elicit either vasoconstriction or normal asynchronous propagating Ca(2+) waves, and 3) high [PE] induced abnormally slow oscillatory contractions (vasomotion) and synchronous Ca(2+) oscillations.

View Article and Find Full Text PDF

Contraction of small arteries is regulated by the sympathetic nervous system, but the Ca2+ transients during neurally stimulated contraction of intact small arteries have not yet been recorded. We loaded rat mesenteric small arteries with the fluorescent Ca2+ indicator fluo-4 and mounted them in a myograph that permitted simultaneous (i) high-speed confocal imaging of fluorescence from individual smooth muscle cells, (ii) electrical stimulation of perivascular nerves, and (iii) recording of isometric tension. Sympathetic neuromuscular transmission was achieved by electrical field stimulation (EFS) (frequency, 10 Hz; pulse voltage, 40 V; pulse duration, 0.

View Article and Find Full Text PDF

Confocal microscopy of fluo-4 fluorescence in pressurized rat mesenteric small arteries subjected to low-frequency electrical field stimulation revealed Ca2+ transients in perivascular nerves and novel, spatially localized Ca2+ transients in adjacent smooth muscle cells. These muscle Ca2+ transients occur with a very brief latency to the stimulus pulse (most <3 ms). They are wider (approximately 5 micro m) and last longer (t(1/2), 145 ms) than Ca2+ sparks.

View Article and Find Full Text PDF