Publications by authors named "Christine Labno"

In human lupus nephritis, tubulointerstitial inflammation (TII) is associated with expansion of B cells expressing anti-vimentin antibodies (AVAs). The mechanism by which AVAs are selected is unclear. Herein, we demonstrate that AVA somatic hypermutation (SHM) and selection increase affinity for vimentin.

View Article and Find Full Text PDF

Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a single receptor, requires stochastic activation of individual variable (V) genes for transcription and recombination. How this occurs remains unknown. Using single-cell RNA sequencing (scRNA-seq) and allelic variation, we show that individual pre-B cells monoallelically transcribe divergent arrays of Vκ genes, thereby opening stochastic repertoires for subsequent Vκ-Jκ recombination.

View Article and Find Full Text PDF

Signal exchange between intestinal epithelial cells, microbes and local immune cells is an important mechanism of intestinal homeostasis. Given that intestinal macrophages are in close proximity to both the intestinal epithelium and the microbiota, their pathologic interactions may result in epithelial damage. The present study demonstrates that co-incubation of murine macrophages with E.

View Article and Find Full Text PDF

The nuclear face of the nuclear membrane is enriched with the intermediate filament protein lamin A. Mutations in LMNA, the gene encoding lamin A, lead to a diverse set of inherited conditions including myopathies that affect both the heart and skeletal muscle. To gain insight about lamin A protein interactions, binding proteins associated with the tail of lamin A were characterized.

View Article and Find Full Text PDF

T follicular helper (TFH) cells are critical for B cell activation in germinal centers and are often observed in human inflamed tissue. However, it is difficult to know if they contribute in situ to inflammation. Expressed markers define TFH subsets associated with distinct functions in vitro.

View Article and Find Full Text PDF

Background: Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin.

View Article and Find Full Text PDF

Permanent neonatal diabetes mellitus is a rare form of insulin-requiring diabetes presenting within the first few weeks or months of life. Mutations in the insulin gene are the second most common cause of this form of diabetes. These mutations are located in critical regions of preproinsulin and are likely to prevent normal processing or folding of the preproinsulin/proinsulin molecule.

View Article and Find Full Text PDF

Productive T cell activation requires efficient reorganization of the actin cytoskeleton. We showed previously that the actin-regulatory protein, hematopoietic lineage cell-specific protein 1 (HS1), is required for the stabilization of F-actin and Vav1 at the immunological synapse and for efficient calcium responses. The Tec family kinase IL-2-inducible T cell kinase (Itk) regulates similar aspects of T cell activation, suggesting that these proteins act in the same pathway.

View Article and Find Full Text PDF

In autoimmune prone murine strains, sequential engagement of the B cell antigen receptor (BCR) on the cell surface and toll-like receptors (TLRs) in late endosomes is necessary and sufficient for secretion of autoantibodies. However, ubiquitous nucleoprotein self-antigens fail to elicit productive TLR activation, and break self-tolerance in anergic DNA-reactive B cells. The mechanisms limiting TLR activation in these cells are largely unknown.

View Article and Find Full Text PDF

HS1, the leukocyte-specific homolog of cortactin, regulates F-actin in vitro and is phosphorylated in response to TCR ligation, but its role in lymphocyte activation has not been addressed. We demonstrate that HS1-deficient T cells fail to accumulate F-actin at the immune synapse (IS) and, upon TCR ligation, form actin-rich structures that are disordered and unstable. Early TCR activation events are intact in these cells, but Ca2+ influx and IL-2 gene transcription are defective.

View Article and Find Full Text PDF

Actin reorganization at the immunological synapse is required for the amplification and generation of a functional immune response. Using small interfering RNA, we show here that dynamin 2 (Dyn2), a large GTPase involved in receptor-mediated internalization, did not alter antibody-mediated T cell receptor internalization but considerably affected T cell receptor-stimulated T cell activation by regulating multiple biochemical signaling pathways and the accumulation of F-actin at the immunological synapse. Moreover, Dyn2 interacted directly with the Rho family guanine nucleotide exchange factor Vav1, and this interaction was required for T cell activation.

View Article and Find Full Text PDF

The Tec family kinase Itk is an important regulator of Ca(2+) mobilization and is required for in vivo responses to Th2-inducing agents. Recent data also implicate Itk in TCR-induced regulation of the actin cytoskeleton. We have evaluated the requirements for Itk function in TCR-induced actin polarization.

View Article and Find Full Text PDF

Actin polymerization at the immune synapse is required for T cell activation and effector function; however, the relevant regulatory pathways remain poorly understood. We showed previously that binding to antigen presenting cells (APCs) induces localized activation of Cdc42 and Wiskott-Aldrich Syndrome protein (WASP) at the immune synapse. Several lines of evidence suggest that Tec kinases could interact with WASP-dependent actin regulatory processes.

View Article and Find Full Text PDF