GABA is a key regulator of adult-born dentate granule cell (abDGC) maturation so mapping the functional connectivity between abDGCs and local interneurons is required to understand their development and integration into the hippocampal circuit. We recorded from birthdated abDGCs in mice and photoactivated parvalbumin (PV) and somatostatin (SST) interneurons to map the timing and strength of inputs to abDGCs during the first 4 weeks after differentiation. abDGCs received input from PV interneurons in the first week, but SST inputs were not detected until the second week.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common form of inherited mental retardation and the most common known cause of autism. Loss of fragile X mental retardation protein (FMRP) in mice ( KO) leads to altered synaptic and circuit maturation in the hippocampus that is correlated with alterations in hippocampal-dependent behaviors. Previous studies have demonstrated that loss of FMRP increased the rate of proliferation of progenitor cells and altered their fate specification in adult KO mice.
View Article and Find Full Text PDFBackground: Large-scale genetic studies have revealed that rare sequence variants, including single nucleotide variants (SNVs), in glutamatergic synaptic genes are enriched in schizophrenia patients. However, the majority are too rare to show any association with disease and have not been examined functionally. One such SNV, KALRN-P2255T, displays a penetrance that greatly exceeds that of previously identified schizophrenia-associated SNVs.
View Article and Find Full Text PDFFragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS ( KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate.
View Article and Find Full Text PDFRepeated administration of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) to rodents causes long-lasting deficits in cognition and memory, and has effects on behaviors that have been suggested to be models of the cognitive impairment associated with schizophrenia (CIAS). Despite this being a widely studied animal model, little is known about the long lasting changes in synapses and circuits that underlie the altered behaviors. Here we examined synaptic transmission ex-vivo in the hippocampus of mice after a subchronic PCP (scPCP) administration regime.
View Article and Find Full Text PDFPresynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice.
View Article and Find Full Text PDF