Publications by authors named "Christine L P Eng"

Article Synopsis
  • - The study analyzed over 373,000 single-cell transcriptomes from colorectal cancer patients to better understand the diversity of epithelial cells, revealing distinct genetic and gene expression differences among malignant cells.
  • - Two new intrinsic subtypes, iCMS2 and iCMS3, were identified, with iCMS3 linked to worse outcomes and encompassing both microsatellite unstable (MSI-H) and some microsatellite-stable (MSS) cancers.
  • - The research proposes a refined 'IMF' classification that incorporates intrinsic epithelial subtype, microsatellite instability status, and fibrosis, leading to five distinct subtypes of colorectal cancer.
View Article and Find Full Text PDF

While the past decade has seen meaningful improvements in clinical outcomes for multiple myeloma patients, a subset of patients does not benefit from current therapeutics for unclear reasons. Many gene expression-based models of risk have been developed, but each model uses a different combination of genes and often involves assaying many genes making them difficult to implement. We organized the Multiple Myeloma DREAM Challenge, a crowdsourced effort to develop models of rapid progression in newly diagnosed myeloma patients and to benchmark these against previously published models.

View Article and Find Full Text PDF

The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.

View Article and Find Full Text PDF

Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak.

View Article and Find Full Text PDF

There has been a growing demand for vaccines against Chikungunya virus (CHIKV), and epitope-based vaccine is a promising solution. Identification of CHIKV T-cell epitopes is critical to ensure successful trigger of immune response for epitope-based vaccine design. Bioinformatics tools are able to significantly reduce time and effort in this process by systematically scanning for immunogenic peptides in CHIKV proteins.

View Article and Find Full Text PDF

Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host.

View Article and Find Full Text PDF

Background: Majority of influenza A viruses reside and circulate among animal populations, seldom infecting humans due to host range restriction. Yet when some avian strains do acquire the ability to overcome species barrier, they might become adapted to humans, replicating efficiently and causing diseases, leading to potential pandemic. With the huge influenza A virus reservoir in wild birds, it is a cause for concern when a new influenza strain emerges with the ability to cross host species barrier, as shown in light of the recent H7N9 outbreak in China.

View Article and Find Full Text PDF