The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor originally identified as an environmental sensor of xenobiotic chemicals. However, studies have revealed that the AHR regulates crucial aspects of cell growth and metabolism, development and the immune system. The importance of the AHR and AHR signaling in eye development, toxicology and disease is now being uncovered.
View Article and Find Full Text PDFThyroid eye disease (TED) is an autoimmune disorder that manifests in the orbit. In TED, the connective tissue behind the eye becomes inflamed and remodels with increased fat accumulation and/or increased muscle and scar tissue. As orbital tissue expands, patients develop edema, exophthalmos, diplopia, and optic neuropathy.
View Article and Find Full Text PDFPurpose: Thyroid eye disease (TED) is a condition that causes the tissue behind the eye to become inflamed and can result in excessive fatty tissue accumulation in the orbit. Two subpopulations of fibroblasts reside in the orbit: those that highly express Thy1 (Thy1+) and those with little or no Thy1 (Thy1-). Thy1- orbital fibroblasts (OFs) are more prone to lipid accumulation than Thy1+ OFs.
View Article and Find Full Text PDFThyroid eye disease (TED) affects 25-50% of patients with Graves' Disease. In TED, collagen accumulation leads to an expansion of the extracellular matrix (ECM) which causes destructive tissue remodeling. The purpose of this study was to investigate the therapeutic potential of activating the aryl hydrocarbon receptor (AHR) to limit ECM accumulation in vitro.
View Article and Find Full Text PDFThyroid eye disease (TED) can lead to scar formation and tissue remodeling in the orbital space. In severe cases, the scarring process leads to sight-threatening pathophysiology. There is no known effective way to prevent scar formation in TED patients, or to reverse scarring once it occurs.
View Article and Find Full Text PDFThyroid eye disease (TED) is a degenerative disease that manifests with detrimental tissue remodeling, myofibroblast accumulation, and scarring in the orbit of affected individuals. Currently, there are no effective therapies for TED that target or prevent the excessive tissue remodeling caused by myofibroblast formation and activation. The canonical cytokine that induces myofibroblast formation is transforming growth factor (TGF)-β.
View Article and Find Full Text PDFOrganic solute transporterα-OSTβ is a bile acid transporter important for bile acid recycling in the enterohepatic circulation. In comparison to wild-type mice, Ostα(-/-) mice have a lower bile acid pool and increased fecal lipids and they are relatively resistant to age-related weight gain and insulin resistance. These studies tested whether Ostα(-/-) mice are also protected from weight gain, lipid changes, and insulin resistance which are normally observed with a western-style diet high in both fat and cholesterol (WD).
View Article and Find Full Text PDFThe organic solute transporter OSTα-OSTβ is a key transporter for the efflux of bile acids across the basolateral membrane of ileocytes and the subsequent return of bile acids to the liver. Ostα(-/-) mice exhibit reduced bile acid pools and impaired lipid absorption. In this study, wild-type and Ostα(-/-) mice were characterized at 5 and 12 mo of age.
View Article and Find Full Text PDFThe organic solute transporter alpha-beta (OSTα-OSTβ) is one of the newest members of the solute carrier family, designated as SLC51, and arguably one of the most unique. The transporter is composed of two gene products encoded by SLC51A and SLC51B that heterodimerize to form the functional transporter complex. SLC51A encodes OSTα, a predicted 340-amino acid, 7-transmembrane (TM) domain protein, whereas SLC51B encodes OSTβ, a putative 128-amino acid, single-TM domain polypeptide.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2009
The organic solute and steroid transporter, Ost alpha-Ost beta, is an unusual heteromeric carrier that appears to play a central role in the transport of bile acids, conjugated steroids, and structurally-related molecules across the basolateral membrane of many epithelial cells. The transporter's substrate specificity, transport mechanism, tissue distribution, subcellular localization, transcriptional regulation, as well as the phenotype of the recently characterized Ost alpha-deficient mice all strongly support this model. In particular, the Ost alpha-deficient mice display a marked defect in intestinal bile acid and conjugated steroid absorption; a decrease in bile acid pool size and serum bile acid levels; altered intestinal, hepatic and renal disposition of known substrates of the transporter; and altered serum triglyceride, cholesterol, and glucose levels.
View Article and Find Full Text PDFReduced glutathione (GSH) is critical for many cellular processes, and both its intracellular and extracellular concentrations are tightly regulated. Intracellular GSH levels are regulated by two main mechanisms: by adjusting the rates of synthesis and of export from cells. Some of the proteins responsible for GSH export from mammalian cells have recently been identified, and there is increasing evidence that these GSH exporters are multispecific and multifunctional, regulating a number of key biological processes.
View Article and Find Full Text PDFThe proteins responsible for reduced glutathione (GSH) export under both basal conditions and in cells undergoing apoptosis have not yet been identified, although recent studies implicate some members of the multidrug resistance-associated protein family (MRP/ABCC) in this process. To examine the role of MRP1 in GSH release, the present study measured basal and apoptotic GSH efflux in HEK293 cells stably transfected with human MRP1. MRP1-overexpressing cells had lower intracellular GSH levels and higher levels of GSH release, under both basal conditions and after apoptosis was induced with either Fas antibody or staurosporine.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2008
Mice deficient in the organic solute transporter (Ost)-alpha subunit of the heteromeric organic solute and steroid transporter, Ostalpha-Ostbeta, were generated and were found to be viable and fertile but exhibited small intestinal hypertrophy and growth retardation. Bile acid pool size and serum levels were decreased by more than 60% in Ostalpha-/- mice, whereas fecal bile acid excretion was unchanged, suggesting a defect in intestinal bile acid absorption. In support of this hypothesis, when [3H]taurocholic acid or [3H]estrone 3-sulfate were administered into the ileal lumen, absorption was lower in Ostalpha-/- mice.
View Article and Find Full Text PDFGSH is released in cells undergoing apoptosis, and the present study indicates that the multidrug resistance-associated proteins (MRPs/ABCC) are responsible for this GSH release. Jurkat cells released approximately 75-80% of their total intracellular GSH during both Fas antibody- and staurosporine-induced apoptosis. In contrast, Raji cells, a lymphocyte cell line that is deficient in phosphatidylserine externalization, did not release GSH during apoptosis, and other apoptotic features appeared more slowly in these cells.
View Article and Find Full Text PDFThe initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process.
View Article and Find Full Text PDFCells undergoing apoptosis release reduced glutathione (GSH) into the extracellular space; however, the physiological significance and the mechanism behind the GSH export remain unclear. The present study demonstrates that GSH is released by HepG2 cells undergoing Fas, tumor necrosis factor alpha (TNFalpha), or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-stimulated cell death. GSH release was observed at times when extracellular lactate dehydrogenase (LDH) activity and propidium iodide (PI) incorporation were low, suggesting that the GSH release does not occur because of nonspecific cell damage, but is occurring through a specific transport system.
View Article and Find Full Text PDF