Publications by authors named "Christine Klemens"

Maintaining acid-base homeostasis is critical for normal physiological function. The kidneys are essential for regulating acid-base homeostasis through maintaining systemic bicarbonate concentration. Chronic metabolic acidosis is an independent risk factor for chronic kidney diseases.

View Article and Find Full Text PDF

Zinc is one of the essential divalent cations in the human body and a fundamental microelement involved in the regulation of many cellular and subcellular functions. Experimental studies reported that zinc deficiency is associated with renal damage and could increase blood pressure. It was proposed that zinc dietary supplementation plays a renoprotective role.

View Article and Find Full Text PDF

Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP.

View Article and Find Full Text PDF

Angiotensin receptor blockers (ARBs) are the first-line treatment for hypertension; they act by inhibiting signaling through the angiotensin 1 receptor (AT1R). Recently, a novel biased AT1R agonist, TRV120027 (TRV), which selectively activates the β-arrestin cascade and blocks the G-protein-coupled receptor pathway has been proposed as a potential blood pressure medication. Here, we explored the effects of TRV and associated β-arrestin signaling in podocytes, essential cells of the kidney filter.

View Article and Find Full Text PDF

Sodium-glucose co-transporters (SGLTs) in the kidneys play a pivotal role in glucose reabsorption. Several clinical and population-based studies revealed the beneficial effects of SGLT2 inhibition on hypertension. Recent work from our lab provided significant new insight into the role of SGLT2 inhibition in a non-diabetic model of salt-sensitive hypertension, Dahl salt-sensitive (SS) rats.

View Article and Find Full Text PDF

Unlabelled: There is clinical evidence that increased urinary serine proteases are associated with the disease severity in the setting of diabetic nephropathy (DN). Elevation of serine proteases may mediate [Ca2+]i dynamics in podocytes through the protease-activated receptors (PARs) pathway, including associated activation of nonspecific cation channels. Cultured human podocytes and freshly isolated glomeruli were used for fluorescence and immunohistochemistry stainings, calcium imaging, Western blot analysis, scanning ion conductance microscopy, and patch clamp analysis.

View Article and Find Full Text PDF

High K supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K (K) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms.

View Article and Find Full Text PDF

Background: Circadian rhythms play an essential role in physiological function. The molecular clock that underlies circadian physiological function consists of a core group of transcription factors, including the protein PER1 (Period1). Studies in mice show that PER1 plays a role in the regulation of blood pressure and renal sodium handling; however, the results are dependent on the strain being studied.

View Article and Find Full Text PDF

The AGTRAP-PLOD1 locus is a conserved gene cluster containing several blood pressure regulatory genes, including CLCN6, MTHFR, NPPA, and NPPB. Previous work revealed that knockout of Clcn6 on the Dahl Salt-Sensitive (SS) rat background (SS-Clcn6) resulted in lower diastolic blood pressure compared to SS-WT rats. Additionally, a recent study found sickle cell anemia patients with mutations in CLCN6 had improved survival and reduced stroke risk.

View Article and Find Full Text PDF

Na-glucose cotransporter-2 (SGLT2) inhibitors are the new mainstay of treatment for diabetes mellitus and cardiovascular diseases. Despite the remarkable benefits, the molecular mechanisms mediating the effects of SGLT2 inhibitors on water and electrolyte balance are incompletely understood. The goal of this study was to determine whether SGLT2 inhibition alters blood pressure and kidney function via affecting the renin-angiotensin-aldosterone system (RAAS) and Na channels/transporters along the nephron in Dahl salt-sensitive rats, a model of salt-induced hypertension.

View Article and Find Full Text PDF

Background And Purpose: Inwardly rectifying K (K ) channels located on the basolateral membrane of epithelial cells of the distal nephron play a crucial role in K handling and BP control, making these channels an attractive target for the treatment of hypertension. The purpose of the present study was to determine how the inhibition of basolateral K 4.1/K 5.

View Article and Find Full Text PDF

Growing evidence suggests that renal purinergic signaling undergoes significant remodeling during pathophysiological conditions such as diabetes. This study examined the renal P2 receptor profile and ATP-mediated calcium response from podocytes in glomeruli from kidneys with type 1 or type 2 diabetic kidney disease (DKD), using type 2 diabetic nephropathy (T2DN) rats and streptozotocin-injected Dahl salt-sensitive (type 1 diabetes) rats. A dramatic increase in the ATP-mediated intracellular calcium flux in podocytes was observed in both models.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is a common complication of diabetes, which frequently leads to end-stage renal failure and increases cardiovascular disease risk. Hyperglycemia promotes renal pathologies such as glomerulosclerosis, tubular hypertrophy, microalbuminuria, and a decline in glomerular filtration rate. Importantly, recent clinical data have demonstrated distinct sexual dimorphism in the pathogenesis of DKD in people with diabetes, which impacts both severity- and age-related risk factors.

View Article and Find Full Text PDF

Genome-wide association studies have found a number of potential genes involved in blood pressure regulation; however, the functional role of many of these candidates has yet to be established. One such candidate gene is , which encodes the transmembrane protein, chloride channel 6 (ClC-6). Although the locus has been widely associated with human blood pressure regulation, the mechanistic role of ClC-6 in blood pressure homeostasis at the molecular, cellular, and physiological levels is completely unknown.

View Article and Find Full Text PDF

Opioid use is associated with predictors of poor cardiorenal outcomes. However, little is known about the direct impact of opioids on podocytes and renal function, especially in the context of hypertension and CKD. We hypothesize that stimulation of opioid receptors (ORs) contributes to dysregulation of intracellular calcium ([Ca]) homeostasis in podocytes, thus aggravating the development of renal damage in hypertensive conditions.

View Article and Find Full Text PDF

Our current knowledge of the properties of renal ion channels responsible for electrolytes and cell energy homeostasis mainly relies on rodent studies. However, it has not been established yet to what extent their characteristics can be generalized to those of humans. The present study was designed to develop a standardized protocol for the isolation of well-preserved glomeruli and renal tubules from rodent and human kidneys and to assess the functional suitability of the obtained materials for physiological studies.

View Article and Find Full Text PDF

Insulin is known to be an important regulator of a number of different channels and transporters in the kidney, but its role in the kidney to prevent Na and volume loss during the osmotic load after a meal has only recently been validated. With increasing numbers of people suffering from diabetes and hypertension, furthering our understanding of insulin signaling and renal Na handling in both normal and diseased states is essential for improving patient treatments and outcomes. The present review is focused on postprandial effects on Na reabsorption in the kidney and the role of the epithelial Na channels as an important channel contributing to insulin-mediated Na reclamation.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is one of the leading pathological causes of decreased renal function and progression to end-stage kidney failure. To explore and characterize age-related changes in DKD and associated glomerular damage, we used a rat model of type 2 diabetic nephropathy (T2DN) at 12 wk and older than 48 wk. We compared their disease progression with control nondiabetic Wistar and diabetic Goto-Kakizaki (GK) rats.

View Article and Find Full Text PDF

Recent studies have suggested that postprandial increases in insulin directly contribute to reduced urinary sodium excretion. An abundance of research supports the ability of insulin to augment epithelial sodium channel (ENaC) transport. This study hypothesized that ENaC contributes to the increase in renal sodium reabsorption following a meal.

View Article and Find Full Text PDF

Background: Autosomal Recessive Polycystic Kidney Disease (ARPKD) is marked by cyst formation in the renal tubules, primarily in the collecting duct (CD) system, ultimately leading to end-stage renal disease. Patients with PKD are generally advised to restrict their dietary sodium intake. This study was aimed at testing the outcomes of dietary salt manipulation in ARPKD.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKDs) are a group of inherited nephropathies marked by formation of fluid-filled cysts along the nephron. Growing evidence suggests that in the kidney formation of cysts and alteration of cystic electrolyte transport are associated with purinergic signaling. PCK/CrljCrl-Pkhd1pck/CRL (PCK) rat, an established model of autosomal recessive polycystic kidney disease (ARPKD), was used here to test this hypothesis.

View Article and Find Full Text PDF

The epithelial sodium channel (ENaC) is the limiting entry point for Na reabsorption in the distal kidney nephron and is regulated by numerous hormones, including the mineralocorticoid hormone aldosterone. Previously we identified ankyrin G (AnkG), a cytoskeletal protein involved in vesicular transport, as a novel aldosterone-induced protein that can alter Na transport in mouse cortical collecting duct cells. However, the mechanisms underlying AnkG regulation of Na transport were unknown.

View Article and Find Full Text PDF

The epithelial sodium channel (ENaC) is expressed in the epithelial cells of the distal convoluted tubules, connecting tubules, and cortical collecting duct (CCD) in the kidney nephron. Under the regulation of the steroid hormone aldosterone, ENaC is a major determinant of sodium (Na ) and water balance. The ability of aldosterone to regulate microRNAs (miRs) in the kidney has recently been realized, but the role of miRs in Na regulation has not been well established.

View Article and Find Full Text PDF