Publications by authors named "Christine Kinnon"

Integration-deficient lentiviruses (IdLVs) deliver genes effectively to tissues but are lost rapidly from dividing cells. This property can be harnessed to express transgenes transiently to manipulate cell biology. Here, we demonstrate the utility of short-term gene expression to improve functional potency of hematopoietic stem and progenitor cells (HSPCs) during transplantation by delivering HOXB4 and Angptl3 using IdLVs to enhance the engraftment of HSPCs.

View Article and Find Full Text PDF

Genetic defects in the purine salvage enzyme adenosine deaminase (ADA) lead to severe combined immunodeficiency (SCID) with profound depletion of T, B, and natural killer cell lineages. Human leukocyte antigen-matched allogeneic hematopoietic stem cell transplantation (HSCT) offers a successful treatment option. However, individuals who lack a matched donor must receive mismatched transplants, which are associated with considerable morbidity and mortality.

View Article and Find Full Text PDF

X-linked severe combined immunodeficiency (SCID-X1) is caused by mutations in the common cytokine receptor γ chain. These mutations classically lead to complete absence of functional T and natural killer cell lineages as well as to intrinsically compromised B cell function. Although human leukocyte antigen (HLA)-matched hematopoietic stem cell transplantation (HSCT) is highly successful in SCID-X1 patients, HLA-mismatched procedures can be associated with prolonged immunodeficiency, graft-versus-host disease, and increased overall mortality.

View Article and Find Full Text PDF

Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII.

View Article and Find Full Text PDF

X-linked chronic granulomatous disease (X-CGD) is a primary immunodeficiency caused by mutations in the CYBB gene encoding the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase catalytic subunit gp91(phox). A recent clinical trial for X-CGD using a spleen focus-forming virus (SFFV)-based γ-retroviral vector has demonstrated clear therapeutic benefits in several patients although complicated by enhancer-mediated mutagenesis and diminution of effectiveness over time due to silencing of the viral long terminal repeat (LTR). To improve safety and efficacy, we have designed a lentiviral vector that directs transgene expression primarily in myeloid cells.

View Article and Find Full Text PDF

The Wiskott-Aldrich syndrome protein (WASp) is a key cytoskeletal regulator in hematopoietic cells. Covalent modification of a conserved tyrosine by phosphorylation has emerged as an important potential determinant of activity, although the physiological significance remains uncertain. In a murine knockin model, mutation resulting in inability to phosphorylate Y293 (Y293F) mimicked many features of complete WASp-deficiency.

View Article and Find Full Text PDF

X-linked SCID (SCID-X1) is amenable to correction by gene therapy using conventional gammaretroviral vectors. Here, we describe the occurrence of clonal T cell acute lymphoblastic leukemia (T-ALL) promoted by insertional mutagenesis in a completed gene therapy trial of 10 SCID-X1 patients. Integration of the vector in an antisense orientation 35 kb upstream of the protooncogene LIM domain only 2 (LMO2) caused overexpression of LMO2 in the leukemic clone.

View Article and Find Full Text PDF

Wiskott-Aldrich syndrome (WAS) is an X-linked hematological disease characterized by immunodeficiency, eczema, and thrombocytopaenia, and shows promise for treatment with hematopoietic stem cell gene therapy. The immunopathology of WAS is attributable at least in part to defects of cell migration and localization as a result of chemotactic, adhesive, and chemokinetic defects. Whereas previous studies using either gammaretroviral or lentiviral vectors have demonstrated variable correction of T-cell proliferation and dendritic cell (DC) cytoarchitecture, we have used a lentiviral vector expressing an eGFP-WASp fusion protein to test the potential for restoration of cell migratory defects.

View Article and Find Full Text PDF

Background: Primary immunodeficiencies (PID) are a group of inherited diseases that affect the development or activity of the immune system. In severe cases allogeneic haematopoietic stem cell transplantation has proved to be a successful curative modality but it is limited by toxicity and reduced efficacy in mismatched donor settings.

Objective: Gene therapy for PID has been developed as an alternative strategy and has entered the clinical arena.

View Article and Find Full Text PDF

Gene therapy for X-linked severe combined immunodeficiency (SCID-X1) has proven highly effective for long-term restoration of immunity in human subjects. However, the development of lymphoproliferative complications due to dysregulated proto-oncogene expression has underlined the necessity for developing safer vector systems. To reduce the potential for insertional mutagenesis, we have evaluated the efficacy of self-inactivating (SIN) gammaretroviral vectors in cellular and in vivo models of SCID-X1.

View Article and Find Full Text PDF

The transforming growth factor-beta-related factor bone morphogenetic protein 4 (BMP4) is expressed in the human embryonic aorta-gonad-mesonephros (AGM) coincident with the emergence of haematopoietic cells and influences postnatal mammalian haematopoietic stem cells in vitro. To investigate the role of BMP4 in mammalian embryonic haematopoiesis, cells were isolated from murine AGM and two populations of CD34(+) cells with different levels of c-Kit expression and multipotency were identified. CD34(+)/c-Kit(high) cells express CD45 and are haematopoietic-restricted progenitors.

View Article and Find Full Text PDF

Specific mutations in the human gene encoding the Wiskott-Aldrich syndrome protein (WASp) that compromise normal auto-inhibition of WASp result in unregulated activation of the actin-related protein 2/3 complex and increased actin polymerizing activity. These activating mutations are associated with an X-linked form of neutropenia with an intrinsic failure of myelopoiesis and an increase in the incidence of cytogenetic abnormalities. To study the underlying mechanisms, active mutant WASp(I294T) was expressed by gene transfer.

View Article and Find Full Text PDF

We treated 10 children with X-linked SCID (SCID-X1) using gammaretrovirus-mediated gene transfer. Those with sufficient follow-up were found to have recovered substantial immunity in the absence of any serious adverse events up to 5 years after treatment. To determine the influence of vector integration on lymphoid reconstitution, we compared retroviral integration sites (RISs) from peripheral blood CD3(+) T lymphocytes of 5 patients taken between 9 and 30 months after transplantation with transduced CD34(+) progenitor cells derived from 1 further patient and 1 healthy donor.

View Article and Find Full Text PDF

Cytomegalovirus (CMV), adenovirus (Ad), and Epstein-Barr virus (EBV) are a major cause of morbidity and mortality after allogeneic stem cell transplantation (SCT). Adoptive immunotherapy with donor-derived cytotoxic T cells (CTLs) directed against EBV or CMV prevents the clinical manifestations of these viruses. We have designed a protocol for the simultaneous generation of polyclonal CTL specific for CMV, Ad, and EBV, which could be used to restore immunity to multiple viruses after SCT.

View Article and Find Full Text PDF

Ubiquitously acting chromatin opening elements (UCOEs) consist of methylation-free CpG islands encompassing dual divergently transcribed promoters of housekeeping genes that have been shown to confer resistance to transcriptional silencing and to produce consistent and stable transgene expression in tissue culture systems. To develop improved strategies for hematopoietic cell gene therapy, we have assessed the potential of the novel human HNRPA2B1-CBX3 UCOE (A2UCOE) within the context of a self-inactivating (SIN) lentiviral vector. Unlike viral promoters, the enhancer-less A2UCOE gave rise to populations of cells that expressed a reporter transgene at a highly reproducible level.

View Article and Find Full Text PDF

Adenoviral infections represent a major cause of morbidity and mortality following haematopoietic stem cell transplantation. Current anti-viral agents are virostatic and it is evident that elimination of adenovirus (ADV) infection is only achieved by recovery of cellular immunity. Using an interferon-gamma (IFN-gamma) secretion and capture assay to isolate ADV-specific T cells, followed by a 2 week expansion and restimulation protocol, we generated ADV T cells that may be used for cellular immunotherapy.

View Article and Find Full Text PDF

Gene therapy is a promising treatment option for monogenic diseases, but success has been seen in only a handful of studies thus far. We now document successful reconstitution of immune function in a child with the adenosine deaminase (ADA)-deficient form of severe combined immunodeficiency (SCID) following hematopoietic stem cell (HSC) gene therapy. An ADA-SCID child who showed a poor response to PEG-ADA enzyme replacement was enrolled into the clinical study.

View Article and Find Full Text PDF

Severe congenital neutropenia (SCN) is characterized by neutropenia, recurrent bacterial infections, and maturation arrest in the bone marrow. Although many cases have mutations in the ELA2 gene encoding neutrophil elastase, a significant proportion remain undefined at a molecular level. A mutation (Leu270Pro) in the gene encoding the Wiskott-Aldrich syndrome protein (WASp) resulting in an X-linked SCN kindred has been reported.

View Article and Find Full Text PDF
Article Synopsis
  • Retroviral and lentiviral vectors can pose a risk of insertional mutagenesis, potentially leading to health issues like cancer in mouse models and certain patients with severe genetic disorders.
  • A significant challenge in using these vectors for gene therapy is ensuring stable gene expression while minimizing these risks.
  • New studies have demonstrated that integration-deficient lentiviral vectors can effectively deliver genes in living rodents, providing long-lasting gene expression and offering potential treatments for conditions like retinal degeneration without integrating into the host's chromosomes.
View Article and Find Full Text PDF

Background: X-linked severe combined immunodeficiency (SCID-X1) is caused by mutations in the common cytokine-receptor gamma chain (gamma(c)), resulting in disruption of development of T lymphocytes and natural-killer cells. B-lymphocyte function is also intrinsically compromised. Allogeneic bone-marrow transplantation is successful if HLA-matched family donors are available, but HLA-mismatched procedures are associated with substantial morbidity and mortality.

View Article and Find Full Text PDF
Article Synopsis
  • Regulated migration and spatial localization of dendritic cells (DCs) are essential for immune responses and tolerance, with a key role played by the Wiskott-Aldrich syndrome protein (WASp).
  • WASp-null immature dendritic cells showed defects in attachment and movement on fibronectin-coated surfaces, leading to impaired translocation and a disrupted response to the chemokine CCL21.
  • In vivo studies revealed compromised migration of WASp-null Langerhans cells, with impaired homing to lymph nodes and incomplete reorganization in the spleen during immune challenges, indicating the vital function of a well-regulated actin cytoskeleton in immune trafficking and the potential immunopathology related to Wiskott-A
View Article and Find Full Text PDF