To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. Here using a UCP3 transgene targeted to the basal epidermis, we show that forced mitochondrial uncoupling inhibits skin carcinogenesis by blocking Akt activation.
View Article and Find Full Text PDFTemperature (Austin)
September 2016
Thermoregulation is an essential homeostatic process in which critical mechanisms of heat production and dissipation are controlled centrally in large part by the hypothalamus and peripherally by activation of the sympathetic nervous system. Drugs that disrupt the components of this highly orchestrated multi-organ process can lead to life-threatening hyperthermia. In most cases, hyperthermic agents raise body temperature by increasing the central and peripheral release of thermoregulatory neurotransmitters that ultimately lead to heat production in thermogenic effector organs skeletal muscle (SKM) and brown adipose tissue (BAT).
View Article and Find Full Text PDF