Publications by authors named "Christine Joy M Omisol"

Article Synopsis
  • * This study focuses on incorporating varying percentages of bio-based polyurethane (PU) into cementitious mortar, with 2% PU showing impressive gains in compressive strength, flexural strength, and initial flow performance after 28 days.
  • * The research demonstrates that bio-based PU not only improves the mechanical properties of cementitious mortars but also establishes strong interfacial bonds, suggesting its potential as an eco-friendly option for industrial flooring applications.
View Article and Find Full Text PDF

Absorption methods using polyurethane foams (PUFs) have recently gained popularity in treating oil spills. However, conventional petroleum-based PUFs lack selectivity and are commonly surface-modified using complicated processes that require toxic and harmful solvents to enhance their hydrophobicity and oil sorption capacities. In this paper, a novel naturally superoleophilic foam with inherent hydrophobic properties has been developed through the conventional one-shot foaming method with the integration of coconut oil-based polyol.

View Article and Find Full Text PDF

Semiconducting nanoparticles (SNPs) have garnered significant attention for their role in photocatalysis technology, offering a cost-effective and highly efficient method for breaking down organic dyes. Of particular significance within SNP-based photocatalysis are tunable band gap TiO nanoparticles (NPs), which demonstrate remarkable enhancement in photocatalytic efficiency. In the present work, we introduce an approach for the synthesis of TiO NPs using kappa-carrageenan (κ-carrageenan), not just as a reducing and stabilizing agent but as a dopant for the resulting TiO NPs.

View Article and Find Full Text PDF
Article Synopsis
  • - Cellulosic substrates like wood are popular in sustainable construction but are highly flammable; traditional fire-retardant coatings often contain harmful chemicals and are opaque, reducing aesthetics and sustainability.
  • - Researchers developed a new transparent fire-retardant coating using phytic acid from rice bran and powdered chicken eggshells, which improved fire protection ratings and self-extinguishing properties without toxic fumes.
  • - The new coating demonstrated better thermal stability and enhanced fire-retardancy, with no loss in adhesion strength, making it a promising alternative for safer construction materials.
View Article and Find Full Text PDF

Coconut oil, a low-molecular-weight vegetable oil, is virtually unutilized as a polyol material for flexible polyurethane foam (FPUF) production due to the high-molecular-weight polyol requirement of FPUFs. The saturated chemistry of coconut oil also limits its compatibility with widely used polyol-forming processes, which mostly rely on the unsaturation of vegetable oil for functionalization. Existing studies have only exploited this resource in producing low-molecular-weight polyols for rigid foam synthesis.

View Article and Find Full Text PDF

This study propounds a sustainable alternative to petroleum-based polyurethane (PU) foams, aiming to curtail this nonrenewable resource's continued and uncontrolled use. Coconut fatty acid distillate (CFAD) and crude glycerol (CG), both wastes generated from vegetable oil processes, were utilized for bio-based polyol production for rigid PU foam application. The raw materials were subjected to catalyzed glycerolysis with alkaline-alcohol neutralization and bleaching.

View Article and Find Full Text PDF