Publications by authors named "Christine Janas"

Today, a growing number of nanotherapeutics is utilized to deliver poorly soluble compounds using the intravenous route of administration. The drug release and the direct transfer of the active pharmaceutical ingredient to serum proteins plays an important role in bioavailability and accumulation of the drug at the target site. It is closely related to the formation of a protein corona as well as the plasma protein binding of the compound.

View Article and Find Full Text PDF

The dispersion releaser (DR) is a dialysis-based setup for the analysis of the drug release from nanosized drug carriers. It is mounted into dissolution apparatus2 of the United States Pharmacopoeia. The present study evaluated the DR technique investigating the drug release of the model compound flurbiprofen from drug solution and from nanoformulations composed of the drug and the polymer materials poly (lactic acid), poly (lactic-co-glycolic acid) or Eudragit®RSPO.

View Article and Find Full Text PDF

A rising number of new chemical entities that exhibit only poor aqueous solubility are identified in drug discovery processes. Polymeric micelles composed of block copolymers (BP) facilitate the delivery of such lipophilic molecules in drug therapy. Consequently, a rational screening and selection procedure for novel BP was established.

View Article and Find Full Text PDF

The development and manufacture of novel nanocarriers for drug delivery has proved challenging with regards to scale-up and pharmaceutical quality. Polymeric nanocarriers composed of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-PEG) were prepared and the photosensitizer meso-tetrakis(3-hydroxyphenyl) chlorin (mTHPC) was effectively encapsulated. Furthermore, the interplay of various process and formulation parameters and their impact on the most important product specifications were investigated by using a factorial design and a central composite design in a microfluidic manufacturing process.

View Article and Find Full Text PDF

Purpose: Development of a novel, rapid, miniaturized approach to identify amorphous solid dispersions with maximum supersaturation and solid state stability.

Method: Three different miniaturized assays are combined in a 2-step decision process to assess the supersaturation potential and drug-polymer miscibility and stability of amorphous compositions. Step 1: SPADS dissolution assay.

View Article and Find Full Text PDF