Background: Ambulatory individuals with spinal muscular atrophy experience weakness and impairments of speed and endurance. This leads to decreased motor skill performance required for daily living including transitioning from floor to stand, climbing stairs, and traversing short and community distances. Motor function improvements have been reported in individuals receiving nusinersen, but changes in timed functional tests (TFTs) which assess shorter distance walking and transitions have not been well documented.
View Article and Find Full Text PDFPurpose The aim of this study was to provide clinicians with an overview of literature relating to dysphagia in spinal muscular atrophy (SMA) to guide assessment and treatment. Method In this clinical focus article, we review literature published in Scopus and PubMed between 1990 and 2020 pertaining to dysphagia in SMA across the life span. Original research articles that were published in English were included.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a pediatric neuromuscular disease caused by genetic deficiency of the survival motor neuron (SMN) protein. Pathological hallmarks of SMA are spinal motor neuron loss and skeletal muscle atrophy. The molecular mechanisms that elicit and drive preferential motor neuron degeneration and death in SMA remain unclear.
View Article and Find Full Text PDFBackground: Data on combining molecular therapies that increase survival motor neuron protein for spinal muscular atrophy type 1 (SMA1) is lacking.
Methods: This was a retrospective study describing our centers' experiences in treating SMA1 patients with combination therapy.
Results: Five children received nusinersen and onasemnogene abeparvovec-xioi (onasemnogene).
Friedreich's ataxia is a neurodegenerative disorder associated with a GAA trinucleotide repeat expansion in intron 1 of the frataxin (FXN) gene. It is the most common autosomal recessive cerebellar ataxia, with a mean age of onset at 16 years. Nearly 95-98% of patients are homozygous for a 90-1300 GAA repeat expansion with only 2-5% demonstrating compound heterozygosity.
View Article and Find Full Text PDFC5-substituted 2,4-diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS (DAQ-DcpSi) have been developed for the treatment of spinal muscular atrophy (SMA), which is caused by genetic deficiency in the Survival Motor Neuron (SMN) protein. These compounds are claimed to act as SMN2 transcriptional activators but data underlying that claim are equivocal. In addition it is unclear whether the claimed effects on SMN2 are a direct consequence of DcpS inhibitor or might be a consequence of lysosomotropism, which is known to be neuroprotective.
View Article and Find Full Text PDFObjective: The aim of this study was to investigate the role of ubiquitin C-terminal hydrolase-L1 (UCHL1) for motor neuron circuitry and especially in spinal motor neuron (SMN) health, function, and connectivity.
Methods: Since mutations in UCHL1 gene leads to motor dysfunction in patients, we investigated the role of UCHL1 on SMN survival, axon health, and connectivity with the muscle, by employing molecular and cellular marker expression analysis and electrophysiological recordings, in healthy wild-type and Uchl1 (nm3419) (UCHL1-/-) mice, which lack all UCHL1 function.
Results: There is pure motor neuropathy with selective degeneration of the motor, but not sensory axons in the absence of UCHL1 function.
Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
January 2015
Molecular technologies have produced diverse arrays of animal models for studying genetic diseases and potential therapeutics. Many have neonatal phenotypes. Spinal muscular atrophy (SMA) is a neuromuscular disorder primarily affecting children, and is of great interest in translational medicine.
View Article and Find Full Text PDFRecent reports underscore the unparalleled potential of antisense-oligonucleotide (ASO)-based approaches to ameliorate various pathological conditions. However, in vivo studies validating the effectiveness of a short ASO (<10-mer) in the context of a human disease have not been performed. One disease with proven amenability to ASO-based therapy is spinal muscular atrophy (SMA).
View Article and Find Full Text PDFLiver steatosis in nonalcoholic fatty liver disease is affected by genetics and diet. It is associated with insulin resistance (IR) in hepatic and peripheral tissues. Here, we aimed to characterize the severity of diet-induced steatosis, obesity, and IR in two phylogenetically distant mouse strains, C57BL/6J and DBA/2J.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. SMA results from deletions or mutations of (), an essential gene. , a nearly identical copy, can compensate for loss if exon 7 skipping is prevented.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is caused by insufficient levels of the survival motor neuron (SMN) protein due to the functional loss of the SMN1 gene and the inability of its paralog, SMN2, to fully compensate due to reduced exon 7 splicing efficiency. Since SMA patients have at least one copy of SMN2, drug discovery campaigns have sought to identify SMN2 inducers. C5-substituted quinazolines increase SMN2 promoter activity in cell-based assays and a derivative, RG3039, has progressed to clinical testing.
View Article and Find Full Text PDFThe loss of motor neurons (MNs) is a hallmark of the neuromuscular disease spinal muscular atrophy (SMA); however, it is unclear whether this phenotype autonomously originates within the MN. To address this question, we developed an inducible mouse model of severe SMA that has perinatal lethality, decreased motor function, motor unit pathology, and hyperexcitable MNs. Using an Hb9-Cre allele, we increased Smn levels autonomously within MNs and demonstrate that MN rescue significantly improves all phenotypes and pathologies commonly described in SMA mice.
View Article and Find Full Text PDFThe SMN2 transgenic mouse, Tg(SMN2)89Ahmb, has emerged as the most widely used in spinal muscular atrophy (SMA) research. Here we clone the genomic integration site of the transgene and demonstrate it to be in intron 4 of the metabotropic glutamate receptor 7 (mGluR7) gene. We found that the integration of this transgene significantly reduced both mGluR7 mRNA and protein levels (24% and 9%, respectively).
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is caused by low survival motor neuron (SMN) levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2) gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention.
View Article and Find Full Text PDFBackground: Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility of many mutant neonates.
View Article and Find Full Text PDFProximal spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. Traditionally, SMA has been described as a motor neuron disease; however, there is a growing body of evidence that arrhythmia and/or cardiomyopathy may present in SMA patients at an increased frequency. Here, we ask whether SMA model mice possess such phenotypes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2010
Proximal spinal muscular atrophy (SMA) results from loss of the survival motor neuron 1 (SMN1) gene, with retention of its nearly identical homolog, SMN2. There is a direct correlation between disease severity and SMN2 copy number. Mice do not have a Smn2 gene, and thus cannot naturally replicate the disorder.
View Article and Find Full Text PDFProximal spinal muscular atrophy (SMA) is a neuromuscular disorder for which there is no available therapy. SMA is caused by loss or mutation of the survival motor neuron 1 gene, SMN1, with retention of a nearly identical copy gene, SMN2. In contrast to SMN1, most SMN2 transcripts lack exon 7.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is caused by loss of the survival motor neuron gene (SMN1) and retention of the SMN2 gene. The copy number of SMN2 affects the amount of SMN protein produced and the severity of the SMA phenotype. While loss of mouse Smn is embryonic lethal, two copies of SMN2 prevents this embryonic lethality resulting in a mouse with severe SMA that dies 5 days after birth.
View Article and Find Full Text PDFProximal spinal muscular atrophy is caused by deletion or mutation of the survival motor neuron 1 gene, SMN1. Rentention of a nearly identical copy gene, SMN2, enables survival but is unable to fully compensate for the loss of SMN1. The SMN1 and SMN2 genes differ by a single nucleotide that results in alternative splicing of SMN2 exon 7 due to the disruption of a binding site for an essential splicing factor.
View Article and Find Full Text PDFSpinal muscular atrophy, a common autosomal recessive motor neuron disorder, is caused by the loss of the survival motor neuron gene (SMN1). SMN2, a nearly identical copy gene, is present in all spinal muscular atrophy patients but differs by a critical nucleotide that alters exon 7 splicing efficiency. This results in low survival motor neuron protein levels, which are not enough to sustain motor neurons.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a motor neuron degeneration disorder, and manifests itself in patients as muscle weakness and paralysis that ultimately leads to death. Currently, there is no effective treatment for this disease. As a first step in developing a treatment for SMA, we are examining whether delivery of the gene encoding survival motor neuron (SMN) protein to primary fibroblast cell lines derived from SMA patients can lead to restoration of nuclear-staining foci, called gems, which are absent in patients with severe SMA.
View Article and Find Full Text PDF