Publications by authors named "Christine Holt"

The remit of this review is to give an autobiographical account of our discovery of the role of local protein synthesis in axon guidance. The paper reporting our initial findings was published in 2001. Here, I describe some of the work that led to this publication, the skepticism our findings initially received, and the subsequent exciting years of follow-up work that helped gradually to convince the neuroscience community of the existence and functional importance of local protein synthesis in multiple aspects of axon biology-guidance, branching, synaptogenesis, and maintenance.

View Article and Find Full Text PDF

Aberrant condensation and localization of the RNA-binding protein (RBP) fused in sarcoma (FUS) occur in variants of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Changes in RBP function are commonly associated with changes in axonal cytoskeletal organization and branching in neurodevelopmental disorders. Here, we asked whether branching defects also occur in vivo in a model of FUS-associated disease.

View Article and Find Full Text PDF

Background: Genes that encode synaptic proteins or messenger RNA targets of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein) have been linked to schizophrenia and autism spectrum disorder (ASD) through the enrichment of genetic variants that confer risk for these disorders. FMRP binds many transcripts with synaptic functions and is thought to regulate their local translation, a process that enables rapid and compartmentalized protein synthesis required for development and plasticity.

Methods: We used summary statistics from large-scale genome-wide association studies of schizophrenia (74,776 cases, 101,023 controls) and ASD (18,381 cases, 27,969 controls) to test the hypothesis that the subset of synaptic genes that encode localized transcripts is more strongly associated with each disorder than nonlocalized transcripts.

View Article and Find Full Text PDF

Localized mRNA translation regulates synapse function and axon maintenance, but how compartment-specific mRNA repertoires are regulated is largely unknown. We developed an axonal transcriptome capture method that allows deep sequencing of metabolically labeled mRNAs from retinal ganglion cell axon terminals in mouse. Comparing axonal-to-somal transcriptomes and axonal translatome-to-transcriptome enables genome-wide visualization of mRNA transport and translation and unveils potential regulators tuned to each process.

View Article and Find Full Text PDF

Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution.

View Article and Find Full Text PDF
Article Synopsis
  • The endoplasmic reticulum (ER) consists of distinct sheets and tubules that change shape based on the cell's environment, but how this happens is not well understood.
  • Researchers discovered that lysosomes actively drive the remodeling of the ER by anchoring to its growth tips, especially when the cell's nutritional status changes.
  • This process affects the distribution of ER tubules and is critical for proper neuronal development; disruptions in this mechanism could lead to axonal growth defects.
View Article and Find Full Text PDF

It is increasingly recognized that local protein synthesis (LPS) contributes to fundamental aspects of axon biology, in both developing and mature neurons. Mutations in RNA-binding proteins (RBPs), as central players in LPS, and other proteins affecting RNA localization and translation are associated with a range of neurological disorders, suggesting disruption of LPS may be of pathological significance. In this review, we substantiate this hypothesis by examining the link between LPS and key axonal processes, and the implicated pathophysiological consequences of dysregulated LPS.

View Article and Find Full Text PDF

Motor vehicle crashes remain the leading cause of death for children. Traditionally, restraint design has focused on the crash phase of the impact with an optimally seated occupant. In order to optimize restrain design for real-world scenarios, research has recently expanded its focus to non-traditional loading conditions including pre-crash positioning and lower speed impacts.

View Article and Find Full Text PDF

Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in the maintenance of the axoplasm in a steady state. Recent studies have begun to identify the mRNAs localized in axons, which could be translated locally under different conditions. Despite that by now hundreds or thousands of mRNAs have been shown to be localized into the axonal compartment of cultured neurons in vitro, knowledge of which mRNAs are localized in mature myelinated axons is quite limited.

View Article and Find Full Text PDF

Ribosome assembly occurs mainly in the nucleolus, yet recent studies have revealed robust enrichment and translation of mRNAs encoding many ribosomal proteins (RPs) in axons, far away from neuronal cell bodies. Here, we report a physical and functional interaction between locally synthesized RPs and ribosomes in the axon. We show that axonal RP translation is regulated through a sequence motif, CUIC, that forms an RNA-loop structure in the region immediately upstream of the initiation codon.

View Article and Find Full Text PDF

Emergency maneuvers such as evasive swerving often precede a crash. These events are typically low-acceleration, time-extended events where the inertial forces have the potential to cause changes to the occupant's initial state (initial posture, position, muscle tension). The objective of this study was to systematically quantify the kinematics of pediatric and adult human volunteers during simulated pre-crash evasive swerving maneuvers and evaluate the effect of age and two vehicle-based countermeasures.

View Article and Find Full Text PDF

Extrinsic cues trigger the local translation of specific mRNAs in growing axons via cell surface receptors. The coupling of ribosomes to receptors has been proposed as a mechanism linking signals to local translation but it is not known how broadly this mechanism operates, nor whether it can selectively regulate mRNA translation. We report that receptor-ribosome coupling is employed by multiple guidance cue receptors and this interaction is mRNA-dependent.

View Article and Find Full Text PDF

Neurons are among the most compartmentalized and interactive of all cell types. Like all cells, neurons use proteins as the main sensors and effectors. The modification of the proteome in axons and dendrites is used to guide the formation of synaptic connections and to store information.

View Article and Find Full Text PDF
Article Synopsis
  • Tissue mechanics plays a crucial role in development, yet the changes in tissue stiffness over time and space in living organisms are not well understood.* -
  • Researchers developed a technique called tiv-AFM, which combines time-lapse atomic force microscopy with fluorescence imaging, to observe rapid changes in tissue stiffness during embryonic development.* -
  • Their findings revealed that the stiffness gradient in the developing brain directs axons of retinal ganglion cells, suggesting that local tissue stiffness is influenced by cell growth and is vital for understanding developmental processes.*
View Article and Find Full Text PDF

Local translation regulates the axonal proteome, playing an important role in neuronal wiring and axon maintenance. How axonal mRNAs are localized to specific subcellular sites for translation, however, is not understood. Here we report that RNA granules associate with endosomes along the axons of retinal ganglion cells.

View Article and Find Full Text PDF

Local translation is rapidly regulated by extrinsic signals during neural wiring, but its control mechanisms remain elusive. Here we show that the extracellular cue Sema3A induces an initial burst in local translation that precisely controls phosphorylation of the translation initiation factor eIF2α via the unfolded protein response (UPR) kinase PERK. Strikingly, in contrast to canonical UPR signaling, Sema3A-induced eIF2α phosphorylation bypasses global translational repression and underlies an increase in local translation through differential activity of eIF2B mediated by protein phosphatase 1.

View Article and Find Full Text PDF
Article Synopsis
  • - Tctp (translationally controlled tumor protein) is important for retinal development, particularly in axon growth and guidance, but its specific role in axon development programs is not fully understood.
  • - In embryonic retinal ganglion cells, Tctp levels in growth cones change based on guidance cues like Netrin-1 (which boosts Tctp activity) and Ephrin-A1 (which reduces it), highlighting how Tctp expression can be regulated in a localized manner.
  • - Despite the fluctuations in Tctp levels, inhibiting its synthesis in axons does not disrupt normal retinal projections, suggesting that while Tctp is involved in guidance, it's not essential for basic axon growth and navigation.
View Article and Find Full Text PDF

During embryonic nervous system assembly, mRNA localization is precisely regulated in growing axons, affording subcellular autonomy by allowing controlled protein expression in space and time. Different sets of mRNAs exhibit different localization patterns across the axon. However, little is known about how mRNAs move in axons or how these patterns are generated.

View Article and Find Full Text PDF

Guidance cues trigger fast responses in axonal growth cones such as directional turning and collapse that require local protein synthesis. An attractive cue-gradient, such as Netrin-1, triggers synthesis of β-actin localized to the near-side compartment of the growth cone that promotes F-actin assembly and attractive steering. How this precise spatial asymmetry in mRNA translation arises across the small expanse of the growth cone is poorly understood.

View Article and Find Full Text PDF

Electroporation allows targeting of genetic materials (e.g., DNA, RNA, antisense morpholinos) to the tissue of interest with high spatial and temporal specificity.

View Article and Find Full Text PDF

Axonal protein synthesis and degradation are rapidly regulated by extrinsic signals during neural wiring, but the full landscape of proteomic changes remains unknown due to limitations in axon sampling and sensitivity. By combining pulsed stable isotope labeling of amino acids in cell culture with single-pot solid-phase-enhanced sample preparation, we characterized the nascent proteome of isolated retinal axons on an unparalleled rapid timescale (5 min). Our analysis detects 350 basally translated axonal proteins on average, including several linked to neurological disease.

View Article and Find Full Text PDF

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation.

View Article and Find Full Text PDF

The tips of axons are often far away from the cell soma where most proteins are synthesized. Recent work has revealed that axonal mRNA transport and localised translation are key regulatory mechanisms that allow these distant outposts of the cell to respond rapidly to extrinsic factors and maintain axonal homeostasis. Here, we review recent evidence pointing to an increasingly broad role for local protein synthesis in controlling axon shape, synaptogenesis and axon survival by regulating diverse cellular processes such as vesicle trafficking, cytoskeletal remodelling and mitochondrial integrity.

View Article and Find Full Text PDF

The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting.

View Article and Find Full Text PDF

Although tctp expression in many areas of the human brain was reported more than 15 years ago, little was known about how it functions in neurons. The early notion that Tctp is primarily expressed in mitotic cells, together with reports suggesting a relative low abundance in the brain, has perhaps potentiated this almost complete disregard for the study of Tctp in the context of neuron biology. However, recent evidence has challenged this view, as a number of independent genome-wide profiling studies identified tctp mRNA among the most enriched in the axonal compartment across diverse neuronal populations, including embryonic retinal ganglion cells.

View Article and Find Full Text PDF